linux sort 算法_七种常见经典排序算法总结(C++实现)<转>

排序算法是非常常见也非常基础的算法,以至于大部分情况下它们都被集成到了语言的辅助库中。排序算法虽然已经可以很方便的使用,但是理解排序算法可以帮助我们找到解题的方向。

1. 冒泡排序 (Bubble Sort)

冒泡排序是最简单粗暴的排序方法之一。它的原理很简单,每次从左到右两两比较,把大的交换到后面,每次可以确保将前M个元素的最大值移动到最右边。

步骤

从左开始比较相邻的两个元素x和y,如果 x > y 就交换两者

执行比较和交换,直到到达数组的最后一个元素

重复执行1和2,直到执行n次,也就是n个最大元素都排到了最后

void bubble_sort(vector &nums)

{

for (int i = 0; i < nums.size() - 1; i++) { // times

for (int j = 0; j < nums.size() - i - 1; j++) { // position

if (nums[j] > nums[j + 1]) {

int temp = nums[j];

nums[j] = nums[j + 1];

nums[j + 1] = temp;

}

}

}

}

交换的那一步可以不借助temp,方法是

nums[j] += nums[j + 1];

nums[j + 1] = num[j] - nums[j + 1];

nums[j] -= num[j + 1];

复杂度分析

由于我们要重复执行n次冒泡,每次冒泡要执行n次比较(实际是1到n的等差数列,也就是(a1 + an) * n / 2),也就是 O(n^2)。 空间复杂度是O(n)。

2. 插入排序(Insertion Sort)

插入排序的原理是从左到右,把选出的一个数和前面的数进行比较,找到最适合它的位置放入,使前面部分有序。

步骤

从左开始,选出当前位置的数x,和它之前的数y比较,如果x < y则交换两者

对x之前的数都执行1步骤,直到前面的数字都有序

选择有序部分后一个数字,插入到前面有序部分,直到没有数字可选择

void insert_sort(vector &nums)

{

for (int i = 1; i < nums.size(); i++) { // position

for (int j = i; j > 0; j--) {

if (nums[j] < nums[j - 1]) {

int temp = nums[j];

nums[j] = nums[j - 1];

nums[j - 1] = temp;

}

}

}

}

复杂度分析

因为要选择n次,而且插入时最坏要比较n次,所以时间复杂度同样是O(n^2)。空间复杂度是O(n)。

3. 选择排序(Selection Sort)

选择排序的原理是,每次都从乱序数组中找到最大(最小)值,放到当前乱序数组头部,最终使数组有序。

步骤

从左开始,选择后面元素中最小值,和最左元素交换

从当前已交换位置往后执行,直到最后一个元素

void selection_sort(vector &nums)

{

for (int i = 0; i < nums.size(); i++) { // position

int min = i;

for (int j = i + 1; j < nums.size(); j++) {

if (nums[j] < nums[min]) {

min = j;

}

}

int temp = nums[i];

nums[i] = nums[min];

nums[min] = temp;

}

}

复杂度分析

每次要找一遍最小值,最坏情况下找n次,这样的过程要执行n次,所以时间复杂度还是O(n^2)。空间复杂度是O(n)。

4. 希尔排序(Shell Sort)

希尔排序从名字上看不出来特点,因为它是以发明者命名的。它的另一个名字是“递减增量排序算法“。这个算法可以看作是插入排序的优化版,因为插入排序需要一位一位比较,然后放置到正确位置。为了提升比较的跨度,希尔排序将数组按照一定步长分成几个子数组进行排序,通过逐渐减短步长来完成最终排序。

例子

例如 [10, 80, 70, 100, 90, 30, 20]

如果我们按照一次减一半的步长来算, 这个数组第一次排序时以3为步长,子数组是:

10 80 70

90 30 20

100

这里其实按照列划分的4个子数组,排序后结果为

10 30 20

90 80 70

100

也就是 [10, 30 20 90 80 70 100]

然后再以1为步长生成子数组

10

30

20

..

这个时候就是一纵列了,也就是说最后一定是以一个数组来排序的。

步骤

计算当前步长,按步长划分子数组

子数组内插入排序

步长除以2后继续12两步,直到步长最后变成1

void shell_sort(vector &nums)

{

for (int gap = nums.size() >> 1; gap > 0; gap >>= 1) { // times

for (int i = gap; i < nums.size(); i++) { // position

int temp = nums[i];

int j = i - gap;

for (; j >= 0 && nums[j] > temp; j -= gap) {

nums[j + gap] = nums[j];

}

nums[j + gap] = temp;

}

}

}

复杂度分析

希尔排序的时间复杂度受步长的影响,具体分析在维基百科。

5. 归并排序(Merge Sort)

归并排序是采用分治法(Divide and Conquer)的一个典型例子。这个排序的特点是把一个数组打散成小数组,然后再把小数组拼凑再排序,直到最终数组有序。

步骤

把当前数组分化成n个单位为1的子数组,然后两两比较合并成单位为2的n/2个子数组

继续进行这个过程,按照2的倍数进行子数组的比较合并,直到最终数组有序

void merge_array(vector &nums, int b, int m, int e, vector &temp)

{

int lb = b, rb = m, tb = b;

while (lb != m && rb != e)

if (nums[lb] < nums[rb])

temp[tb++] = nums[lb++];

else

temp[tb++] = nums[rb++];

while (lb < m)

temp[tb++] = nums[lb++];

while (rb < e)

temp[tb++] = nums[rb++];

for (int i = b;i < e; i++)

nums[i] = temp[i];

}

void merge_sort(vector &nums, int b, int e, vector &temp)

{

int m = (b + e) / 2;

if (m != b) {

merge_sort(nums, b, m, temp);

merge_sort(nums, m, e, temp);

merge_array(nums, b, m, e, temp);

}

}

这个实现中加了一个temp,是和原数组一样大的一个空间,用来临时存放排序后的子数组的。

复杂度分析

在merge_array过程中,实际的操作是当前两个子数组的长度,即2m。又因为打散数组是二分的,最终循环执行数是logn。所以这个算法最终时间复杂度是O(nlogn),空间复杂度是O(n)。

6. 快速排序(Quick Sort)

快速排序也是利用分治法实现的一个排序算法。快速排序和归并排序不同,它不是一半一半的分子数组,而是选择一个基准数,把比这个数小的挪到左边,把比这个数大的移到右边。然后不断对左右两部分也执行相同步骤,直到整个数组有序。

步骤

用一个基准数将数组分成两个子数组

将大于基准数的移到右边,小于的移到左边

递归的对子数组重复执行1,2,直到整个数组有序

void quick_sort(vector &nums, int b, int e, vector &temp)

{

int m = (b + e) / 2;

if (m != b) {

int lb = b, rb = e - 1;

for (int i = b; i < e; i++) {

if (i == m)

continue;

if (nums[i] < nums[m])

temp[lb++] = nums[i];

else

temp[rb--] = nums[i];

}

temp[lb] = nums[m];

for (int i = b; i < e; i++)

nums[i] = temp[i];

quick_sort(nums, b, lb, temp);

quick_sort(nums, lb + 1, e, temp);

}

}

解法2: 不需要辅助空间

void quick_sort(vector &nums, int b, int e)

{

if (b < e - 1) {

int lb = b, rb = e - 1;

while (lb < rb) {

while (nums[rb] >= nums[b] && lb < rb)

rb--;

while (nums[lb] <= nums[b] && lb < rb)

lb++;

swap(nums[lb], nums[rb]);

}

swap(nums[b], nums[lb]);

quick_sort(nums, b, lb);

quick_sort(nums, lb + 1, e);

}

}

复杂度分析

快速排序也是一个不稳定排序,时间复杂度看维基百科。空间复杂度是O(n)。

7. 堆排序(Heap Sort)

堆排序经常用于求一个数组中最大k个元素时。因为堆实际上是一个完全二叉树,所以用它可以用一维数组来表示。因为最大堆的第一位总为当前堆中最大值,所以每次将最大值移除后,调整堆即可获得下一个最大值,通过一遍一遍执行这个过程就可以得到前k大元素,或者使堆有序。

在了解算法之前,首先了解在一维数组中节点的下标:

i节点的父节点 parent(i) = floor((i-1)/2)

i节点的左子节点 left(i) = 2i + 1

i节点的右子节点 right(i) = 2i + 2

步骤

构造最大堆(Build Max Heap):首先将当前元素放入最大堆下一个位置,然后将此元素依次和它的父节点比较,如果大于父节点就和父节点交换,直到比较到根节点。重复执行到最后一个元素。

最大堆调整(Max Heapify):调整最大堆即将根节点移除后重新整理堆。整理方法为将根节点和最后一个节点交换,然后把堆看做n-1长度,将当前根节点逐步移动到其应该在的位置。

堆排序(HeapSort):重复执行2,直到所有根节点都已移除。

void heap_sort(vector &nums)

{

int n = nums.size();

for (int i = n / 2 - 1; i >= 0; i--) { // build max heap

max_heapify(nums, i, nums.size() - 1);

}

for (int i = n - 1; i > 0; i--) { // heap sort

int temp = nums[i];

num[i] = nums[0];

num[0] = temp;

max_heapify(nums, 0, i);

}

}

void max_heapify(vector &nums, int beg, int end)

{

int curr = beg;

int child = curr * 2 + 1;

while (child < end) {

if (child + 1 < end && nums[child] < nums[child + 1]) {

child++;

}

if (nums[curr] < nums[child]) {

int temp = nums[curr];

nums[curr] = nums[child];

num[child] = temp;

curr = child;

child = 2 * curr + 1;

} else {

break;

}

}

}

复杂度分析

堆执行一次调整需要O(logn)的时间,在排序过程中需要遍历所有元素执行堆调整,所以最终时间复杂度是O(nlogn)。空间复杂度是O(n)。

0. 参考

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值