顺德数学家园
作者:王常斌 佛山市顺德区教育发展中心
责编:张小春
审核:王常斌
普通高中试验教材相对以往的教材有很多优越性,但因教材编写时间仓促,不同版本的教材都存在这样或那样的问题。特别是新课程中教学内容多,教学时间少,故有些教材编写的比较简略。教师在教学过程中,若只是照本宣科,学生可能就一知半解,因此教师对待新教材的某些内容,要进行恰当处理,才能使教学事半功倍。下面是笔者的一次教学实例,与同行们共享。
《解三角形》在过渡教材中安排在《平面向量》一章之中,属《平面向量》的附属内容,但在新课程中却独立成一章,增加了课时,提高了要求。
新课标人教A版必修5第一章《解三角形》第一节有这样一道例题(P7例3):
在△ABC中,已知b=60cm, c=34cm, A=410, 解三角形(角度精确到10,边长精确到1cm)。
本例是利用余弦定理解三角形的应用。这道题看似简单,但对于初学完正弦定理和余弦定理的学生来说,如果教师不能正确引导,只是照本宣科,会造成学生理解不透彻,以后碰到类似的题会犯错误。笔者在教此例题时,从不同的角度引导学生,达到了较好的教学效果。下面简述笔者的教学过程。
教师板书例题。
T(Teacher下同):本例要求解三角形,已知条件是哪种类型?
S(Student下同):已知两边和夹角。
T:我们第一步应做什么?
S:先用余弦定理求第三边a。
T:OK,你们先完成这一步。
教师安排学生甲上台板演:
T:好啦,现在△ABC中我们已经知道三边a、b、c及角A,还需求出角B及角C,怎样求呢?
S1:可以根据正弦定理求出sinB和sinC,进而求出B和C。
S2:也可以根据余弦定理的推论计算出cosB和cosC,进而求出B和C。
T:思路都不错,可行吗?
S:可行。
T:那么你们用这两种方法分别计算,一、二组的同学先用第一种方法(正弦定理),三、四组的同学先用第二种方法(余弦定理),先做完的同学再用另一种方法,S1和S2上台板演,S1用第一种方法,S2用第二种方法。
S1:由正弦定理得:
T:同学们请看黑板上两位同学的做法(稍等),两种方法怎么做出两种不同的结果呢?大家帮忙分析一下,谁对谁错?问题出在哪里?
S3:S1错,它的三角形内角和A+B+C=410+740+330=1480≠1800.
T:好厉害,一下子就看出了问题的症结!那么造成这种错误的原因是什么呢?是计算错误吗?
S3语塞。
S4:不是运算错误,是由于sinB=0.9601>0,则B可能为锐角,也有可能为钝角,而他只把B当成锐角了。
T:有道理!那按你说应有两种结果,对吗?
S4:我认为是这样,当B为锐角时,B≈740, 当B为钝角时,B≈1800-740=1060。
T:那角C的值是否也有两个呢?
S4:应该有两个,一个是330,另一个是1470。
S5:C不能等于1470,否则C+A=1470+470=1880>1800,与三角形内角和矛盾了。
T:回答非常好!那么最后的解应该是什么呢?
S5:B≈1060,C≈330,B≈740应舍去,因为它不符合角形内角和定理。
T:看来第一种方法(正弦定理)做起来很麻烦,每次做完后都要检验。有没有什么好方法做完后不用检查呢?
S6:用第二种方法(余弦定理),象S2那样做。
T:为什么用余弦定理做不会出现两解的情况呢?而用正弦定理会呢?
S6:因为锐角的余弦为正,钝角的余弦为负,而锐角和钝角的正弦均为正。
T:完全正确,这正是问题的关键所在。那么S2同学的做法是否完美无缺呢?
S7:我认为求出B=1060后,求C时只需用三角形内角和定理,不用再算cosC,这样可简化运算。
T:很好,为了提高解题的速度,这个小小的技巧你们可要记住了,而更重要的是这样做的结果一定满足三角形内角和定理,不会产生矛盾。这样看来,如果已知三边求角时,我们可以先用余弦定理求出两角,第三角用内角和定理求出。
我们刚才肯定了第二种方法(余弦定理),是不是就意味着第一种方法(正弦定理)完全不可取呢?
S8:非也,非也(全班哄笑)!用第一种方法(正弦定理)比用第二种方法(余弦定理)的运算量要小。
T:这倒是,但需要讨论解的情况呀。
S8:两解情况的讨论我们也可以避免。
T:有这么好的方法吗?我们来洗耳恭听!
S8:因为c,所以C,故C一定是锐角。由正弦定理算出sinC≈0.5440,得C≈330,B=1800-C=1060。
稍停,全班爆发出热烈的掌声。
T:妙啊!运算量小,且避免了讨论。同学们打开课本第7页看书上的解法,和S8的想法不谋而和。现在同学们能归纳一下已知两边和夹角解三角形的方法和步骤吗?
首先,它的解是唯一的吗?为什么?
S9:唯一,由以前学过的三角形全等的判定方法SAS可知它的解是唯一的。
师生一起归纳解题步骤:
第一步:先用余弦定理求出第三边;
第二步:
方法一:用正弦定理求较小边所对的角(锐角),再用内角和求出第三角。
方法二:用余弦定理求出任意一角,再用内角和定理求第三角。