igraph 算网络指标_DeepGCN—深度图卷积神经网络

1bcff96721c2c1c1d1193a195f9a7ecf.png

DeepGCN: Can GCNs Go as Deep as CNNs?

paper链接:https://arxiv.org/abs/1904.03751

代码链接:https://github.com/lightaime/deep_gcns

project: https://www.deepgcns.org/

1. GCN存在的问题

GCN中,aggregate的本质其实相当于图像处理中的平滑(smooth),在知乎上也有人用物理学的原理从热传播的角度解释GCN的aggregate过程: https://www.zhihu.com/question/54504471

但是深层GCN的Aggregate容易造成过度smooth问题,即节点间的feature难以区分,导致GCN模型一般在2-3层左右。因此,如何让GCN能够进行深层模型的学习一直是一个难题。

本文提出了几个能让GCN进行深层学习的方法,主要contribution如下:

  1. 他们提出了三个深层GCN的算法:residual/dense connections, and dilated convolutions
  2. 他们使用点云语义分割(point cloud segmentation)任务作为实验平台,展示了这些新层对深度GCNs训练稳定性和性能的影响。
  3. 使用它们自己提出的模型,在数据集S3DIS上实现了近4%的性能提升
注: 我对GCN的smooth问题的理解是,由于Aggregate函数应用了拉普拉斯矩阵的原因,节点的feature信息传递速度太快,导致2-3层后GCN节点间feature难以区分。用上面所引用的知乎链接的角度来看就是,热传播速率太快,导致我们没有充分捕捉热传播途中的节点feature信息。而本文显然提出了一种缓解的方式。

2. 模型与方法

2.0 GCN模型

通用的GCN网络从

层到
层的传播按如下方式:

4a787329a380f474ff1903d09e5d9064.png

其中

是指
层图和
层图,
是指
Aggregate 函数中需要学习的参数,
是指
update 函数要学习的参数。(注:在GCN开山之作 SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS 中,其实是没有
参数的)

2.1 Residual Learning for GCNs

说简单点就是作者受到ResNet的启发把GCN改成了下面这样,并把它称为ResGCN:

c15e4a221c753d2ae3f39bcdbfa1be88.png

2.2 Dense Connections in GCNs

DenseNet的提出是为了利用各层之间的紧密连通性,这改善了网络中的信息流,实现了各层之间特征的高效重用。受DenseNet的启发,作者将类似的想法应用到GCNs中,以便利用来自不同GCN层的信息流。具体做法如下:

e1f9b196a2287e8a2caccfc9799416ed.png

会产生
维的特征,且
的特征是
维,则第
层的特征维度应该是
维。

2.3 Dilated Aggregation in GCNs

作者从借鉴小波分析,提出了以下方法:

  1. 作者考虑在特征空间上使用
    距离,对与目标节点(卷积中心点)的距离进行排序:
  2. Dilated K-NN: 使用dilated方法确定dilated系数为
    时,目标节点(卷积中心点)
    相 对应的邻居节点为

如下图所示:

711a3e9ded3d46eeb4e63e8e3548bc0f.png

3. 此方法相当于将卷积中心点

和自定义的邻居节点集
中的每 一个点连成一条边。 然后,按照等式(1)中所示,进行GCN步骤中的
AggregateUpdate 函数,

3. 实验

作者提出了ResGCN和DenseGCN来处理GCNs的消失梯度问题。为了扩大接受域,他们定义了一个扩张的图卷积算子 dilated convolution 。 为了评估的框架,他们对大规模点云分割任务进行了大量的实验,并证明他们的方法可以显著提高模型性能。

3.1 TASK: 3D Point Cloud Segmentation

通常,点云中的每个点都用其表示三维空间坐标和可能的辅助特征(颜色、表面法向量等)表示。作者将每个点视为有向图

中的顶点,并使用Dilated k-NN构造每个GCN层上点之间的有向动态边(参见2.3节)。在第一层,我们通过执行扩展的k-NN搜索,在三维坐标空间中寻找最近的邻居来构造输入图G0。在后续的层中,我们使用扩展的k-NN在特征空间中动态地构建边缘。对于分割任务,我们预测了输出层所有顶点的类别。

3.2 实验指标

他们对所有类别都使用了 overall accuracy (OA)mean intersection over union (mIoU) 作为评价指标。

3.3 Network Architectures

如下图所示,模型包含三个部分:GCN、fusion、MLP三个模块。

c1397c9d9ac8fd85283019ebfee5afab.png

其中GCN模块会把每一层的特征最后输出出去,PlainGCN就是最原始的GCN。fusion模块中会将GCN每一层的特征concatenate,然后1x1 conv,最后max pooling。MLP模块用每个point的feature判断类别。随着GCN层的深度变大,dilated k-NN 的 dilation 参数

也随之线性变大。

3.4 实验结果

97ba1e82871e1f07523a243c1211da1b.png

10d2093d8c199d39627b8ecdf077fc2d.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值