1、 1浅谈高等代数在中学的应用数学与计算机科学学院 专业:数学与应用数学学号:2011031532 朱伟达 指导老师:卢明先【摘要】线性代数是数学的一个分支,是一 门数学基础课程近几年随着高等数学已渐渐走入初等数学,线 性代数在初等数学中也有广泛 应用 本文共分为五个部分:例 说行列式在中学数学中的应用,线性方程组在中学数学中的应用,二次型理论在中学数学中的应用,矩 阵与 变换引入中学数学的意义及应用,用向量法解决初等几何问题本文主要是从上述几个方面分析了线性代数在中学数学中的若干应用以及有关例题的讲解过程【关 键 词】行列式;齐次线性方程组;二次型; 矩阵;向量Discussion on Application of Higher Algebra in middle schoolZHU wei-da 2011031532 Advisor:LU ming-xianPure and Applied Mathematics College of Mathematics and Computer Science【Abstract】:Linear algebra is a branch of m。
2、athematics. It is a mathematical foundation course. In recent years, some content of higher mathematics are begun to learn by middle school students. And Linear algebra has also wide application in elementary mathematics. This paper is divided into five parts. In these parts, we will give a lot of examples to show some applications of determinant, Linear equations, quadratic theory, matrix and transform, vector in elementary mathematics. 【Keywords】: determinant homogeneous linear system quadrati。
3、c form matrix vector. 2引言:线性代数是学习自然科学、工程和社会科学的一门高度抽象且逻辑性很强的基础理论课程,它本身理论性强,并且计算繁杂作为高等学校基础课,除了作为各门学科的重要工具以外,还是提高人才的全面素质中起着重要的作用,他在培育理性思维和审美功能方面的作用也得到充分的重视可以说任何与数学有关的课程都涉及线性代数知识学习数学就必须解题,解题要以自己的实践过程来实现本文在阐述一些重要的概念和定理之后,常常附以具体例子,这样可以使读者从实例中了解问题的具体内容,掌握解决问题的思路和算法步骤,以减少理解障碍,从而提高逻辑读者的推理和判断的能力第 1章 行列式在中学数学中的应用随着高中数学新课程的实施,行列式在中学数学中的渗透、应用越来越受关注, 行列式是在寻求线性方程组公式解的过程中产生的。行列式是线性代数的基本工具,有许多的应用。这里结合中学数学着重探讨行列式的应用。本文从三个方面浅析其在中学数学中的应用.1.1 用行列式证明等式利用行列式证明等式与不等式的方法是对同一行列式用两种不同的计算方法,利用其结果相等而得到等式的证明.例 1 已知 ,求证 .0abc。
4、+=33abca+=证明:令 ,则3D,0ccbabacab+=即 330abc+-例 2 已知 , , ,求证: .1xy=bxcy+1xay=22abcabc+=+证明:令 ,则有22()()()()Dac-.011cxbybcac=-+-=例 3 在 中,求证 .ABC222cosossosABCABC- 3证明 由于 2221coscoscoscos 1CBABCABCA-+=-0cs11cscscso0ooabaBAA-=-+所以,在 中, 成立.AC222csCBC+=-例 4 求证: .2cscs()cso()1abab+=证明:因为 221osscc()12cos()coscos()()Dabaab=+=-+又 ,22100sinsinab=-=-故 222coco()cos()1aba+-+=1.2 用行列式分解因式由行列式的定义, .由此启发,我们可以把一个代数121212aa=-式 看成两个式子的差,而每个式子又可以看成两个因式的乘积,即 (F FMNPQ=-均为代数式),于是 .由此即可根据行列式的性质,对某些多项式,MNPQMPFQN=进行因式分解.例 1 分。
5、解因式 .432640xx+-解: 4322(61)4(5)x=+-222 1564x-+ 4.2(4)65)(21)(5)xxxx=-+=-+例 2 将 分解因式.386ab+-解: 32()2abab-=+.2()(4)abb-例 3 分解因式 .2 2cac+解: 22 22()()()ab acb-=-+-.22()()1bcab-利用行列式分解因式的关键是将所给多项式的形式写成行列式的形式,并注意行列式的排列规则.1.3 行列式在解析几何中的应用定理 1 (1)以平面内三点 为顶点的 的面积2 123(,)(,)(,)AxyBCxyABCD的绝对值 .123Sxy=(2)通过两点 的直线方程为 .12(,)(,)PQ120xy=例 求过点 和点 的直线的方程.,3,4解 由 ,得直线的方程为 .120xy=50xy+-=(3)平面内三条直线 .112233:,:,:0LabcLabcLaxbyc+= 5相较于一点或互相平行的充要条件是: .1122330abc=推论 2平面上三点 在一条直线上的充要条件是12(,)(,)(,)PxyQRxy.230xy=定理 2 通过平面上三。
6、点 的圆的方程为123(,)(,)(,)ABxyC.21122330xy+=例 1 平面上给出三个两两相交的圆,每两个圆有一条根轴,则三条根轴互相平行或交于一点.证明:设三个圆的方程分别为 .两两相减得三条交线20(1,23)iiixyDEyF+=正是所述三条根轴,它们所在的直线方程为 121212333()()(),0xy-+=三条直线方程的系数行列式为 1212121212123333330DEFDEF-=故三直线平行或相较于一点.本题实质是求一封闭图形经过仿射变换后所得图形的面积.利用线性变换面积定理求解本题,居高临下,让人耳目一新.第 2章 线性方程组在中学数学中的应用1.关于消元法与解的结构。线性方程组的理论是线性代数的重要理论结果,它是中学数学方程组求解方法的理论化与规范化。线性方程组是否有解、有解时解的数量、通解的公式表示、解的几何意义等一 6系列问题都得到了圆满的解决,体现了高等代数相对于初等代数的新观点、新思想、新方法的优越性,对中学数学教学具有高屋建瓴的指导作用。消元法是中学数学求解二(三)元一次方程组的基本方法,在高等代数中可以得到理论上的完美解释,即由于线性方程。
7、组的初等变换保持同解性,所以消元法可行,而且消元法的实质是反复对方程组作初等变换,或者说消元法是对线性方程组的增广矩阵作行的初等变换的过程。并且,根据线性方程组解的理论容易知道解的只有三种情况(唯一解、无解、无穷多解)以及具体判定方法和解的结构特征。特别地,在一定条件下,方程组的唯一解可以用公式形式给出,即 Cramer 法则。Cramer 法则的意义主要在于:明确了解的存在性与唯一性,为判断这类方程组的有解性提供了比较直接的方法;将求解问题,转化为行列式的计算,避免了消元法的繁琐计算;以公式的形式给出了解与系数的明显关系,为一般线性方程组公式解的表达式提供了理论依据。2.几个平面共点、共线、平行与重合的问题。利用线性方程组的理论容易解决平面共点、共线、平行与重合的问题。实际上,平面族交于一点的条件是对应的方程组有唯一解,相当于系数矩阵与增广矩阵的秩都等于。3;(1)平面族共线的条件是系数矩阵与增广矩阵的秩都等于。(2)平面族过同一平面(重合)的条件是系数矩阵与增广矩阵的秩都等于 1;平面族互相平行的条件是对应的方程组无解,相当于系数矩阵与增广矩阵的秩不相等。此外线性方程组理论还可解决。
8、直角坐标平面上四点共圆或者过不共线的三点的圆的方程等问题。比如下面就是一个线性方程组的例子:例:一个庙里有一百个和尚,这中间有大和尚有小和尚,这一百个和尚每顿饭总共吃一百个馒头,其中大和尚一个人吃三个,小和尚三个人吃一个,问大和尚和小和尚各多少人?解 设大和尚的数目是 ,小和尚的数目是 ,则有xy, 解之得 103xy257x其实,更多元的线性方程组也是同样的解法.定理 3 含有 n 个未知量 n 个方程的齐次线性方程组有非零解的充要条件是:方程组的系数行列式等零.例 1 已知函数 ,证明 、 、 中至少有一个不小于 .2()fxab=+(1)f2f(3)f 12解把 =1,2,3 代入函数表达式,列方程组 ()0242393fab上述关于 a、b、1 的齐次线性方程组有非零解,故 ,展开整理得1()24039f-= 7,假设结论不成立,即 , , ,易推(1)2(3)2ff-+=1()2f1()2f(3)f出 ,从而产生矛盾,故命题成立.f例 2 已知 , , ,求证: .xayz+ybxzcy=+1abcabc+=-证明:由已知得关于 得方程组,yz0xzcy因为 不可能为零,所以。
9、由定理知,xyz10abc化简得 即 .10abcbca-=12bc+=-由已知条件的结构特征与待解问题之间的关系建立齐次线性方程组,构造三阶行列式,其解题思路新颖,能够巧妙地解决中学数学中的若干棘手问题,凸显了用高等数学理论与方法解决初等数学问题的优越性.第 3章 二次型理论在中学数学中的应用中学数学里有时遇到多元二次多项式的因式分解问题,我们可以利用高等代数中二次型理论来探讨复数域和实数域上多元二次多项式的分解条件及分解方法。实际上,n 元二次多项式可以和 n+1 元二次型联系起来。比如由二元二次多项可构成三元二次型反之,由二次型取 z=1,得相应的二次多项式。一般地,如果 n 元二次多项式为则称 n +1 元二次型 8为对应的二次型。容易证明:n 元二次多项式可分解的充要条件是对应的二次型可分解为两个 n +1 元一次齐次式的乘积。因此可以主要考虑二次型的分解。根据二次型理论,可以证明以下结论:复数域上二次型可分解的充要条件是它的秩不超过 2;实数域上二次型可分解的充要条件是它的秩等于 1,或者秩是 2 且符号差是 0。这个结论表明了二次多项式或二次型可分解与否的判别方法,至于具体的分解方法,一般是利用配方法或二次型理论中的矩阵合同。
《浅谈高等代数在中学的应用》由会员平***分享,可在线阅读,更多相关《浅谈高等代数在中学的应用》请在金锄头文库上搜索。