论文学习——基于滑动窗口和聚类算法的变压器状态异常检测


写在前面:《高电压技术》;主办单位:国家电力科学研究院;中文核心期刊、CA、SA、JST、EI、CSCD;月刊

0 封面

在这里插入图片描述

1 标题(title)

  • 基于滑动窗口和聚类算法的变压器状态异常检测
  • 昨天才更了一篇关于《基于滑动窗口...》的文章,今天就称热打铁,再更一篇。看看别人是怎么利用已有的技术来运用到自己领域上,然后提供贡献的。
  • 关于 聚类算法 这个词的出现频率很高,与之相对应的是分类算法和预测算法。

2 作者(author)

  • 这次作者是6人,我去知网查了一下作者信息,发文量都是大几十的,尤其是二作老师六百多。
  • 这篇文章值得学习,是上海交通大学的老师们和国家电网的领导们合力之作!
    在这里插入图片描述

3 摘要(abstract)

  • 这篇文章和我自身的研究方向不一样哈,所以我主要关注的是 时间序列、滑动窗口、无监督的k-means聚类方法

4 引言(introduction)

在这里插入图片描述
在这里插入图片描述

  • 本文的方法是:基于无监督的k-means聚类方法建立多元特征量数据点的议程检测模型,并通过在时间序列上建立滑动时间窗口检测出异常值模式及发生时间。

5 异常检测及异常模式识别的模型建立

  • 本文基于固定长度的滑动时间窗口对时间序列的局部数据进行阈值判断,对数据流进行预处理和异常模式判断。

5.1 建立候选异常数据的集合

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.2 基于k-means聚类技术的多元异常数据检测

  • 如何确定k值呢?
    在这里插入图片描述
    在这里插入图片描述

5.3 异常检测及模式识别步骤

  1. 聚类算法是基于无序数据集的分类算法,无法反映数据集的时间属性。
  2. 标准化:防止某些值域相对较小的特征量在空间中的属性被值域较大的特征量所掩盖。
    在这里插入图片描述

5.4 异常值分析步骤

在这里插入图片描述

  1. 【获取参量正常的历史数据】,使用k-means算法,进行k个聚类迭代划分。
  2. 【获取待检测的在线检测时间序列数据】,通过滑动时间窗口筛选出异常数据集。
  3. 判断异常数据集中的数据,是否属于第一步中的k个聚类簇,若不属于则为异常数据点。
  4. 比较数据点和其邻近时刻数据点情况,对该队员时间序列进行异常模式分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值