什么是方向图乘积定理_中考数学丨托勒密定理的证明及其应用题!

本文深入解析托勒密定理,指出圆内接四边形两条对角线乘积等于两对对边乘积之和,并通过证明和典型例题展示其应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

35bcc5ed981c0fcd27f5c389aea57c28.png

一、托勒密定理:圆内接四边形两条对角线的乘积等于两对对边乘积之和。

(若四边形ABCD内接于⊙O,则AC•BD=AD•BC+AB•DC)

65829f648c12977d80906a623a975992.png

二、托勒密定理的证明:

若四边形ABCD为圆内接四边形,则对角线AC与BD的乘积等于一对对边AB与CD的乘积加上另一对对边AD与BC的乘积,即AC·BD=AB·CD+AD·BC。

证明:

如下图所示:

06b5c56bf86fdf368c79dc5bd145aafa.png

设∠ACB大于∠ACD,则在∠ACB内作一个以点C为顶点、以CB为一边的∠BCE,使∠BCE=∠ACD(图中的红色角)。

∠CAD=∠CBE(同弧同侧的圆周角相等),

三角形ACD∽BCE,

AD : BE = AC : BC,即AD·BC=AC·BE

同理,三角形CDE∽ABC,

CD :AC = DE :AB,即AB·CD=AC·DE

①+②=AD·BC+AB·CD=AC·(BE+DE)=AC·BD

即:AC•BD=AB•CD+AD•BC

三、典型例题

(1)

6d9076b0bd9daf586997c26179d8a7d1.png
481eaff0c3a92b408104b950a0730046.png
e4d9c7c67b1481db361fab13d2df7193.png

(2)

a9b4991d56b97016a2795c511598fb5d.png
51cfc47c03249919e7f6e6196abf811c.png
1547ba862b6868a8fc23c7a3ca72e585.png
ce0b845a45b70425f7486ce7b76369c5.png

举一反三练一练:

(1)

48176c11a11aa09140c60b4a7c983f34.png

(2)

eb2cb90890998a0f996158c1041d3fd3.png

(3)

262a504fced770662400c3a6276c0841.png

(4)

46bc2834035593f8238cf755420814fb.png

(5)

c3db0783d6a89193b0aae3419c0cb5b2.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值