相控阵天线(一):直线阵列天线特性和阵列因子(方向图乘积定理、波束扫描、含python代码)

本文详细解析了方向图乘积定理,包括单元天线构成的直线阵、阵列因子和方向图的计算,以及波束扫描的影响。通过Python代码展示了如何实现,并揭示了阵元数、间距和扫描角对方向图特性的影响规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方向图乘积定理

任意形式单元天线构成的直线阵如下图所示:
在这里插入图片描述
阵中第n个单元的远区辐射场可表示为如下形式:

在这里插入图片描述
其中An和an分别表示单元天线的激励幅度和相位,f(θ,φ)为单元天线的方向图函数。
由上可得,阵列的远区总场为:
在这里插入图片描述
化简可得阵列的方向图函数为:
在这里插入图片描述

在这里插入图片描述

阵列因子方向图

阵列天线的阵因子如下所示:
在这里插入图片描述
对于均匀直线阵,单元为等间距 d 排列,激励幅度相同 An = A0 ,激励相位按α 均匀递变(递增或递减),可得均匀直线阵的阵因子为:
在这里插入图片描述
绘制不同阵元数N(N=8、16、32)的阵因子方向图如下所示:
在这里插入图片描述
不同单元间距d(d=0.3、0.5、1.0)对应的阵列方向图如下所示:
请添加图片描述
不同单元数和不同间距与阵列方向图的波束宽度的关系如下所示:
请添加图片描述
不同扫描角的阵列方向图绘制如下所示:
请添加图片描述
其中随着扫描角度的增加,波束宽度也在增加,如下所示:
请添加图片描述
由上式子绘制不同移相量、不同阵元间距与扫描角的关系如下所示:
请添加图片描述
从上面的数据我们可以发现如下规律:
1.第一个旁瓣为–13 dBc,与阵元数量和阵元间距无关;
2.方向图零点的数量随着阵元数量的增加而增多。
3.波束宽度随着阵元数增加而减小;
4.波束宽度随着阵元间距增加而减小;
5.波束宽度随着扫描角度的增加而增大;

波束扫描

对阵列方向图进行波束扫描并绘制动图如下所示:
24阵元,间距0.5波长的直线阵列因子的方向图如下所示:
在这里插入图片描述
24阵元(切比雪夫加权),间距0.5波长的直线阵列方向图,考虑单元方向图的影响,如下所示:
在这里插入图片描述
24阵元,间距0.8波长的直线阵列因子的方向图如下所示:
在这里插入图片描述
24阵元,间距0.8波长的直线阵列方向图,考虑单元方向图的影响,如下所示:
在这里插入图片描述
通过上面的数据我们可以发现如下规律:
1.主波束的幅值按照单元因子的方向图进行变化;
2.进行波束扫描的时候,副瓣发生恶化;
3.当阵元间距大于1倍波长的时候,阵列方向图出现栅瓣;

阵列方向图和单元方向图

对不同单元方向图进行阵列方向的绘制,如下所示:
单元方向图为方波束时的阵列方向图:
在这里插入图片描述
单元方向图为宽波束时的方向图:
在这里插入图片描述
单元方向图为窄波束的阵列方向图:
在这里插入图片描述
通过上面的数据我们可以发现如下规律:
1.进行波束扫描的时候,副瓣会与单元方向图有关;
2.单元方向图的波束越宽,扫描方向图的增益下降越少

方向图乘积定理的python代码示例

方向图乘积定理的python程序如下所示:

import math
import cmath
import matplotlib.pyplot as plt
import numpy as np
class Pattern:
    def radiation(self):
        #单元数量,频率(GHz),位置(mm),幅度,相位(°)
        n_cell = 9
        f = 1.575
        position = [0, 94, 206, 281, 393, 475, 587, 683, 785]
        power = [0.2, 0.8, 0.4, 0.3, 1, 0.9, 0.2, 0.7, 0.4]
        phase = [0, 82, 165, 201, 247, 229, 262, 305, 334]
        #单元方向图
        data_x = np.arange(-180,180,1)
        data_y = np.cos(data_x/180*np.pi)
        mini_a = 1e-5
        #2*pi/lamuda
        k = 2 * math.pi * f / 300
        data_new = []
        #方向图乘积定理
        for i in range(0, len(data_x)):
            a = complex(0, 0)
            k_d = k * math.sin(data_x[i] * math.pi / 180)
            for j in range(0, n_cell):
                a = a + power[j] * data_y[i] * cmath.exp(complex(0,(phase[j] * math.pi / 180 + k_d * position[j])))
            data_new.append(10*math.log10(abs(a)+mini_a))
        plt.plot(data_x, data_new,"y")
        plt.show()
def main(argv=None):
    pattern = Pattern()
    pattern.radiation()

if __name__ == '__main__':
    main( )

绘制出来的方向图如下所示:
在这里插入图片描述

### 相控阵天线对星算法实现方案 #### 设计目标与需求分析 为了使相控阵天线能够精确指向卫星并保持稳定通信,需要设计套有效的对星算法。该算法应能自动计算最佳波束方向角,并实时调整各单元天线之间的相对相位差,从而确保整个天线系统的增益最大化。 #### 基本原理概述 通过对来自不同位置的多个天线元件施加特定的时间延迟或相位偏移量,可以改变合成辐射场的方向图特性。具体到对星操作上,则是要找到能使接收到的能量最强的那个角度组合[^1]。 #### 关键技术要点 - **初始粗略定位**:利用GPS或其他导航系统获取当前位置信息以及待跟踪卫星的大致方位; - **精细扫描搜索**:基于预估的位置范围执行二维平面内的网格化遍历测试,记录下各个采样点处所测得的最大信号强度及其对应的角度参数; - **动态校准优化**:引入反馈机制监控实际工作状态下的性能表现,适时修正偏差以维持最优对接姿态; #### 算法流程描述 假设已知卫星轨道数据地面站坐标: 1. 计算理论上的仰角(Elevation)方位角(Azimuth),作为初步估计值; 2. 构建局部区域内的离散样本集{(θ_i, φ_j)},其中i,j分别表示沿两个维度划分的小格子编号; 3. 遍历上述集合中的每个元素,测量此时链路质量指标Q(θ_i,φ_j)=f(P_r/P_t,d,λ,...),这里P_r代表接收功率而P_t指代发射端输出水平,d为两者间距且λ即载波波长; 4. 找出使得函数取最大值得那组参数{θ*, φ*},将其设为目标指向; 5. 应用前述提到的方法调节各分支电路中加载于馈源上的附加相移量ΔΦ_k=Ψ(θ*,φ*),k∈[1,N],N是总的振子数目; 6. 定期重复步骤3至5的过程来进行必要的更新维护作业。 ```python def calculate_beam_direction(gps_location, satellite_orbit_data): """根据GPS位置卫星轨道数据计算初始波束方向""" elevation = ... azimuth = ... return (elevation, azimuth) def scan_and_optimize(elevation_range, azimuth_range, step_size): """在指定范围内进行细密扫描寻找最佳波束方向""" max_signal_strength = None best_angles = None for elev in range(*elevation_range, step_size): for azim in range(*azimuth_range, step_size): signal_strength = measure_signal_quality(elev, azim) if not max_signal_strength or signal_strength > max_signal_strength: max_signal_strength = signal_strength best_angles = (elev, azim) return best_angles def adjust_phase_shifts(best_angles, num_elements): """按照最优点设置各单元天线间的相位差异""" phase_differences = [] for k in range(num_elements): delta_phi = compute_required_phase_difference(k, *best_angles) apply_phase_shift_to_element(k, delta_phi) phase_differences.append(delta_phi) return phase_differences ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值