1006
// ----
设当前的时间为
H:M:S,
其中
0 <= H
皆为整数
, S
为实数
// ----
于是时针、分针、秒针相对于时刻
0:0:0
的转角分别为
// ---- A(H) = 30H + M/2 + S/120;
// ---- A(M) = 6M + S/10;
// ---- A(S) = 6S;
求解下式:
D <= | A(H) - A(M) | <= 360-D;
D <= | A(H) - A(S) | <= 360-D;
D <= | A(M) - A(S) | <= 360-D;
本来想枚举每秒的情况,
但是角度并不是以秒为最小单位,
这样精度会丢失。
正确解法是解
方程,但我不会!
1060
求
N^N
中的第一个数字。
m=n^n;
两边同取对数,得到,
log10(m)=n*log10(n);
再得到,
m=10^(n*log10(n));
m=10^(
整数
+
小数
) = 10^
整数
* 10^
小数。
然后,对于
10
的整数次幂,第一位是
1
,所以,第一位数取决于
n*log10(n)
的小数部分
1066
求
N!
中最后一个非
0
的数字。
压力好大的一题,看过他们的做法,很详细,当我不是很看的懂,套过吉林模板过的。有空
回来再看看!
1099
就是求
n/1+n/2+n/3+...+n/n
。接下来就是模拟题。
本来想如果仅仅只是分数,注意整数后面的空格不要输出,发现数据里没有这种情况。
用
long long
类型。
1100
1110
1112
1115
多边形求重心
1124
虽然
1066
还是不会做,但这题还是没问题的,产生
0
的情况就是
2*5
,而
2
的个数绝对多余
5
,
所以就是计算
5
的个数就行。
因为
25 = 5 * 5
,是两个
5.125 = 5 * 5 * 5
。所以要递归求解