matlab 泛函极值,(二) 泛函的极值 - osc_99vlkukb的个人空间 - OSCHINA - 中文开源技术交流社区...

泛函的极值必要条件

仿照函数极值必要条件的到处方法,得到泛函取得极值的必要条件。 首先,设所考虑的变量函数均通过固定的两个端点:

$y(x_0) = a, \qquad y(x_1) = 0$

$\delta y(x_0) = 0, \qquad \delta y(x_1) = 0$

考虑泛函的差值

$$J[y + \delta y] - J[y] = \int^{x_1}_{x_0} [ F(x, y + \delta y, y' + (\delta y)') - F(x, y, y')] dx$$

当函数的变分 $\delta y$ 足够小时,可将上式进行泰勒展开,有

$$\begin{align} J[y + \delta y] - J[y] &= \int^{x_1}_{x_0} \left{ [\delta y \frac{\partial}{\partial y} + (\delta y)' \frac{\partial}{\partial y'}]F + \frac{1}{2!} [\delta y \frac{\partial}{\partial y} + (\delta y)' \frac{\partial}{\partial y"}]^2 F + \cdots \right} dx\ &= \delta J[y] + \frac{1}{2!} \delta^2 J[y] + \cdots \end{align} $$

其中, $$\delta J[y] \equiv \int^{x_1}_{x_0} [\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'}(\delta y)']dx$$

是泛函 $J[y]$ 的一级变分。

泛函 $J[y]$ 取极小值的必要条件是泛函的一级变分为 0,即: $$\delta J[y] \equiv \int^{x_1}_{x_0} [\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'}(\delta y)']dx = 0$$

将上式积分中的第二项分部积分,同时代入边界条件,有 $$\begin{align} \delta J[y] &= \frac{\partial F}{\partial y'} \delta y|^{x_1}{x_0} + \int^{x_1}{x_0} [\frac{\partial F}{\partial y} \delta y - \frac{d}{dx}\frac{\partial F}{\partial y'}\delta y]dx \ &= \int^{x_1}_{x_0} [\frac{\partial F}{\partial y} - \frac{d}{\partial x}\frac{\partial F}{\partial y'}] \delta y dx = 0 \end{align} $$

由于 $\delta y$ 的任意性,可以得到 $$\frac{\partial F}{\partial y} - \frac{d}{\partial x}\frac{\partial F}{\partial y'} = 0$$

这个方程为 Euler-Lagrange 方程,它是泛函 $J[y]$ 取得极小值的必要条件的微分形式。

数学知识补充

泰勒展开

分部积分

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值