
问题引入

我们的生活中球体无处不在,各种球类运动中的球、我们赖以生存的地球都是球体,本期我们就来探索一下球体的体积。

先让我们回顾一下圆面积的求法和长方体体积的求法。
1.圆的面积在六年级的时候我们探索了求圆面积的方法:将一个圆不断地切割再交替拼接,发现这个圆切割地越多,它就越逼近为一个矩形,最后我们得到,矩形的宽就是原本圆的半径,而矩形的长则是原本圆周长的一半,通过等面积法我们得到圆的面积为:
在小学的时候我们还研究过长方体的体积,还记得我们是怎么求它的体积的吗?
没错,我们用的是等体积法。
我们可以使用如图所示大小的一个长方体盒子,再寻找一些棱长为1cm的正方体,然后用这些小正方体去填充这个长方体盒子,所用小正方体的体积就是长方体的体积。不难发现,我们一共用了140个小正方体,也就意味着这个长方体的体积就是7×5×4=140cm3。
于是我们得到了长方体的体积公式:
V=长×宽×高或者说是V=底面积×高.
在探索圆的面积以及长方体体积的过程中,我们所使用的方法都是把原来的图形转化成了另外一个或多个图形,再结合逼近等数学思想,得到了这些图形的面积或者是体积。
那么使用相似的方法,你会求一个球的体积吗?


背景介绍

球体在我们生活中随处可见,它是个完美的立体几何图形。
1.球的基本概念
球是一个旋转体,如动图所示,它是由一个半圆,以它的直径所在直线为旋转轴,旋转一周所围成的旋转体。

与圆相似,球也有它自己的球心、半径以及直径。

2.球上的圆
在球上我们可以找到无数大大小小的圆。我们将球上的圆分为两类,大圆与小圆。
大圆:球面上圆心与球心重合的圆,即在球面上以球心为圆心的圆。因其为球面上最大的圆而得名,与“小圆”相对。例如在地球上,赤道与经线圈均为大圆。
小圆:球面上圆心与球心不重合的圆,即在球面上不以球心为圆心的任意一圆。例如在地球上,纬线圈(除赤道)均为小圆。

原理剖析

利用等体积法求球的体积
相信大家在学物理中的浮力时,肯定听说过这样一个故事,国王让阿基米德去测量一个皇冠的体积,阿基米德苦思冥想,终于在洗澡时,想到了可以将皇冠放入到水中,使用排水法来测量皇冠的体积。
而这种排水法就是利用等体积的水来代替皇冠的体积,从而通过测量水的体积来获得皇冠的体积。使用相同的方法,我们也可以用来求球的体积。

如图,我们用一个长7分米、宽5分米、水深3分米的长方体水箱,以及任意一个可以被浸没在水中的球。我们把这个球完全浸没在水中,发现水面升高了2分米。
我们不难计算,此时:
由此可见,我们可以将球浸没在盛水的长方体容器中,水面上升部分的体积就是球的体积,使用这种方法还可以得到任何不规则物体的体积。
那么有没有一个简洁的公式用来计算球的体积呢?
其实早在古希腊时期,阿基米德就是用了上述类似的方法,证明出球的体积表示为。我国古代数学家刘徽、祖冲之以及祖暅(gèng)之也对球的体积有一系列的研究。

我们来看看前人对于求球体体积的探索吧。

延伸探究

阿基米德测球的体积
阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称。
阿基米德准备了如图所示的圆柱体以及小球,圆柱体的高就是小球的直径,圆柱体底面的圆也等于小球的直径,使得小球放入圆柱体能够完美地与其内切。
然后,阿基米德将圆柱体装满水,将小球放入,部分水溢出,再把小球取出,阿基米德经过测量发现,此时圆柱体中的水仅剩下原本水的。他又更换了其他尺寸的圆柱体以及小球,得到了这样一个结论:
“以球的大圆为底,以球直径为高的圆柱,其体积是球体积的。”
即
若球半径为r,由
故
就这样,阿基米德计算出了最早的计算球的体积的公式:。
阿基米德非常珍视这一成果,根据他的遗愿,人们把等边圆柱中含有一个内切球的几何图形及这条著名定理铭刻在他的墓碑上。
关于圆柱的体积公式的推导,同学们可以在文末读到哦!

祖暅原理求球的体积
祖暅[gèng](456年-536年),又叫祖暅之,字景烁,范阳遒县(今河北涞水)人。中国南北朝时期数学家、天文学家,祖冲之之子。
我国古代数学家也对球有着深刻的研究,祖暅沿用了前人刘徽的思想,得出“幂势相同,则积不容异”的结论,“势”即是高,“幂”是面积。这就是现在的祖暅原理:夹在两个平行平面间的两个等高几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等。
比如说:如下图所示,夹在两个平行平面间的两个图形,它们的高相等(如下左图),现在在这两个平行平面中间任意插入一个平行平面(如下右图),若截得的S1与S2总相等,那么我们就可以说这两个几何体的体积相等。
换一个具体的例子:如图,两垛5角硬币具有相同体积,因为这两垛硬币等高,且每一层都是一个硬币,硬币的面积总相等,所以这两垛硬币的体积相同。
于是,祖暅依据这个原理,将球一切为二,去寻找与半球体等高,且同一水平上的截面面积总相等的几何体。
如图所示,祖暅设这个半球的半径为R,在高度为h的水平面上截取出一个小圆,使用勾股定理,就可以计算出这个小圆的半径为,于是就得到了截面高度为h时,所截得的圆的面积为
,接着祖暅之便去寻找一个神秘几何体,它与半球等高,并且在同一高度所截图形的面积也是
。同学们来想想,我们学过的哪个图形的面积与
很相似呢?
没错,那就是圆环!如图所示,圆环的面积,如果有一个几何体,其每个高度上的截面都是圆环,并且它的面积等于
,那不就符合要求了吗?于是祖暅之就开始寻找这样一个神秘几何体。
经过一番推理计算,祖暅构造出了如图所示的神秘几何体,它是在圆柱内挖掉一个圆锥(见下图),并且圆柱的高与底面圆的半径都等于球的半径R,不难发现,该几何体的任一水平截面都为圆环,若圆环中的小圆半径为r,那么在高度为h处的圆环面积为,只要证明r=h,就可以说明该几何体在高度为h时的截面面积等于
。同学们来动手试试吧。
如下图所示,根据相似三角形,我们可以求得r等于h,这样就得到它在高度为h时的面积也等于。
根据祖暅原理,因为此半球的体积就等于该几何体的体积,所以该几何体的体积为:
就这样,祖暅得到了球的体积,这与早年阿基米德获得的球的体积公式一样。
关于圆锥的体积公式的推导,同学们可以自己去查阅相关资料哦!

以上两种方法就是先人对于球体积的探索,后人又在他们的基础上做了更严谨、更先进的证明,也都得到了相同的球的体积公式:。

拓展阅读

使用祖暅原理探究柱体的体积
棱柱:有两个面(上、下底面)互相平行,其余各面都是平行四边形,并且每相邻两个四边形的公共边都互相平行。

如图,这些就都是棱柱。
我们知道如图所示的长方体的体积是。
那如下图所示的柱体的体积呢?
没错,聪明的你一定知道了,因为这两个棱柱的底面面积和长方体的底面面积都是S,且它们的高都为h,所以这两个棱柱的体积V都等于底面积×高=s·h。因此,所有棱柱的体积都可以用长方体的体积来表示,这些柱体的体积都为:。
同样的道理,根据祖暅原理,我们也可以得到一个圆柱体的体积,如下图所示,它们的底面积S和高h都相等。
所以
另外,使用求圆面积的方法我们也可以来求圆柱的体积。如图,将圆柱体切开后交错叠在一起,我们发现切割的次数越多这个几何体就越逼近为一个长方体,其体积为:
来试试求下面这个柱体的体积吧。
最后给同学们留一个问题:如图所示的圆柱,其高为10cm,底面圆的直径为6cm,求此圆柱的体积。

参考文献
[1] 邓纳姆.天才引导的历程:数学中的伟大定理[M].北京:机械工业出版社,2013:110-115 (文中图片来自网络)
—END—
