单结晶体管的导电特性_室温制备自愈合、可注射PEDOT:PSS导电水凝胶

本文来自微信公众号:X-MOLNews

导电聚合物聚乙撑二氧噻吩掺杂聚(苯乙烯磺酸盐)(PEDOT:PSS)具有优异的生物相容性、高导电率以及卓越的耐水性等优点,被广泛用于太阳能电池、发光二极管、电化学晶体管、超级电容器以及生物医学等领域。其中,在生物医学领域其相较于无机半导体优异的柔性使其在构筑柔性生物电子器件方面起到难以替代的作用。但是,目前PEDOT:PSS在该领域的应用形态主要以膜形态为主,聚合物膜与生物器官物性方面的显著差异限制了其性能稳定性和器件寿命。近来,PEDOT:PSS导电凝胶体系的出现为解决这一问题带来了新的策略。

近日,美国加州大学洛杉矶分校(UCLA)Ali KhademhosseiniShiming Zhang等研究者利用PEDOT:PSS体系的室温凝胶化特性,借助表面活性剂的辅助,在室温条件下实现了具有可注射性的新型导电PEDOT:PSS凝胶体系的大面积简便制备。基于简单的注射成型等方法,可实现纤维状、曲面基底膜等多种PEDOT:PSS形态柔性器件的制备。同时,该PEDOT:PSS凝胶体系展现出优异的自愈合性能,在开发有机生物电子器件方面具有广阔的应用前景。相关论文发表于Advanced Materials

PEDOT:PSS导电凝胶体系的构筑过程。图片来源:Adv. Mater.

研究人员选用表面活性剂十二烷基苯磺酸(DBSA)为辅助试剂制备PEDOT:PSS导电凝胶体系。当DBSA浓度达到约3 v/v%时,体系基于物理交联在室温下能够实现凝胶化,同时凝胶化时间可根据DBSA浓度在2-200 min之间进行精细调节。基于PEDOT链间π-π 堆叠和疏水性相互作用构成的物理交联点,该PEDOT:PSS凝胶体系具有良好的自支撑成型性能。该PEDOT:PSS凝胶体系的导电率达约10-1 S cm-1,远超过大脑或脊椎等器官领域对可植入水凝胶体系导电性能的需求。

不同形态PEDOT:PSS凝胶器件的注射成型。图片来源:Adv. Mater.

该RT-PEDOT:PSS杨氏模量约为1 kPa,在50%拉伸条件下能保持其80%导电性。为进一步减少RT-PEDOT:PSS凝胶体系与生物器件(模量1~100 kPa)的模量差异,研究团队引入第二凝胶组分聚丙烯酰胺(PAAm)以提升凝胶体系机械性能;共混改性凝胶体系的模量可实现1~100 kPa范围内精细调控。同时,PAAm凝胶组分的引入未导致改性凝胶体系整体的导电性能的明显降低。该新型PEDOT:PSS导电凝胶体系的室温凝胶化特性,使其能够基于简便的注射成型实现在曲面基底成膜或制备不同形状凝胶纤维用于生物电子器件构筑。

凝胶体系体积膨胀能力及自愈合性能展示。图片来源:Adv. Mater.

此外,研究发现该PEDOT:PSS导电凝胶体系与膜状态相比具有更大的体积膨胀能力,5 min内干湿态体积变化达约300%。同时,该PEDOT:PSS导电凝胶体系展现出优异的自愈合性能。

总结

该研究基于表面活性剂助剂DBSA的引入,简便实现了具有室温凝胶化和自愈合能力PEDOT:PSS导电凝胶体系的构筑。通过第二PAAm凝胶体系的引入实现了体系机械性能的可调性,使其与生物器件呈现更好的兼容性。此外,该研究成果中PEDOT:PSS凝胶体系的注射成型特性使其作为纤维状器件能够更广泛的应用于生物医学领域。

Room-Temperature-Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics

Shiming Zhang, Yihang Chen, Hao Liu, Zitong Wang, Haonan Ling, Changsheng Wang, Jiahua Ni, Betul Celebi Saltik, Xiaochen Wang, Xiang Meng, Han-Jun Kim, Avijit Baidya

Adv. Mater., 2019, DOI: 10.1002/adma.201904752

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值