Floyd算法的介绍
算法的特点
弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包。
算法的思路
通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入两个矩阵,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。矩阵P中的元素b[i][j],表示顶点i到顶点j经过了b[i][j]记录的值所表示的顶点。
假设图G中顶点个数为N,则需要对矩阵D和矩阵P进行N次更新。初始时,矩阵D中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞,矩阵P的值为顶点b[i][j]的j的值。 接下来开始,对矩阵D进行N次更新。第1次更新时,如果”a[i][j]的距离” > “a[i][0]+a[0][j]”(a[i][0]+a[0][j]表示”i与j之间经过第1个顶点的距离”),则更新a[i][j]为”a[i][0]+a[0][j]”,更新b[i][j]=b[i][0]。 同理,第k次更新时,如果”a[i][j]的距离” > “a[i][k-1]+a[k-1][j]”,则更新a[i][j]为”a[i][k-1]+a[k-1][j]”,b[i][j]=b[i][k-1]。更新N次之后,操作完成!
补充:以下面图为例子,b[i][j]中存储的是Vi~Vj之间的中介点,b[i][j]初始值为j,比如V0~V3最短路径是V0-->V2-->V1-->v3,在计算最短路径时转换为V0-->V2的距离加上V2-->V3的最短距离,接下来类似于递归,V2-->V3的最短路径就是以V1为中介点,V2-->V1的距离加上V1-->V3的距离。因此,b[0][3]=2
实例说明
将整体分为两个步骤
1.计算metrixD矩阵(两顶点之间的最短距离)和P矩阵(两顶点的中介点)
#include #include
void Create_metrixD_P(int** metrixD, int **P ,int VerNum, intEdgNum)
{int x, y, Weight, edg_count = 0;inti, j, k;for (i = 0; i < VerNum; ++i) {for (j = 0; j < VerNum; ++j) {
metrixD[i][j]=INT_MAX;
P[i][j]=j;
}
}while (edg_count
scanf("%d%d%d", &x, &y, &Weight);
metrixD[x- 1][y - 1] =Weight;
edg_count++;