pycharm 远程连接运行pyspark

本文介绍如何在PyCharm中配置Spark2.0环境,包括设置SSH Interpreter、复制pyspark文件夹、定义环境变量JAVA_HOME、PYSPARK_PYTHON及SPARK_HOME等步骤,并给出一个简单的WordCount示例。
摘要由CSDN通过智能技术生成
  1. pycharm 新建项目,添加如下远程 ssh interpreter 解释器,输入连接要连接的host 和username




     

  2. 将linux 中spark 下的pyspark 复制到python 中

由于是spark2.0 因此只支持python3.5以下

cp -r  /home/software/spark-2.0.1-bin-hadoop2.7/python/pyspark  /usr/local/python3.5/lib/python3.5/site-packages/

 

3. 在pycharm 中编写code,添加JAVA_HOME  PYSPARK_PYTHON SPARK_HOME变量为linux 中对应的环境变量,

 

 

import os
JAVA_HOME = '/home/software/jdk1.8.0_141'
PYSPARK_PYTHON = "/usr/bin/python3.5"
SPARK_HOME='/home/software/spark-2.0.1-bin-hadoop2.7'
os.environ["SPARK_HOME"] = SPARK_HOME
os.environ["JAVA_HOME"] = JAVA_HOME
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON

from pyspark import SparkContext
if __name__ == '__main__':
    #创建spark context
    sc = SparkContext('local[2]','wordcount')
    #通过spark context 获取rdd
    rdd1 = sc.textFile('file:///root/tmpdata/test.txt')
    rdd2 = rdd1.flatMap(lambda line:line.split())
    rdd3 = rdd2.map(lambda x:(x,1))
    rdd4 = rdd3.reduceByKey(lambda x,y:x+y)
    print(rdd4.collect())

4 运行结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值