StarGANv2: Diverse Image Synthesis for Multiple Domains论文解读及实现

StarGAN v2: Diverse Image Synthesis for Multiple Domainsp
github:https://github.com/clovaai/stargan-v2

0 小结

0.1 模型 4个

模型四个:

  • Generator: G网络
    输入图片x,和风格编码s(可以是F网络或者E网络生成的s),生成x_fake
  • Mapping network: F网络
    输入随机隐变量z和领域风格y (onehot类型数据) ,生成风格编码s
  • Style encoder:E网络
    输入图片x和领域风格y,生成风格编码s
  • Discriminator:D网络
    输入图片x和领域风格y,判断图片X是否是真实的y领域

0.2 损失函数 7项(生成器损失4项,判别器损失3项)

  • 生成器总损失(4项)
    生成器图片判断为真+真实图片和生成图片的风格编码(E网络)s距离最小+不同隐变量z 生成的风格编码s距离大+重构前后的x距离小
  • 判别器总损失(3项)
    真实图片判断为真+生成器图片判别为假+ 正则化损失

1 模型架构

模型主要架构由四部分组成
①Generator、②Mapping network、③Style encoder、④Discriminator

  • Generator:G网络
    生成模型G将输入图片x转换成 输出图片G(x,s),反映了一个领域的独有风格编码s。s是有Maping network F或者风格编码E生成。s被设计表征为领域y的风格。

  • Mapping network: F网络
    给定一个隐变量z和一个领域y,mapping network F生成一个风格 s=F(z),F由一层MLP和多个输出分支组成,分支代表了领域的所有风格。通过随机采样不同的隐变量z,F能高效的学习各领域的风格表征。

  • Style encoder:E网络
    给定图片X和相应的领域y,encoder E挖掘风格编码 s=E(x),E和上面的F类似。使用不同的参考图片,E可以产生不同风格的编码s。

  • Discriminator:D网络
    判别器D是多任务判别器,由多个输出分支组成,每个分支Dy学习一个二分类,判断图片X是否是真实的y领域,或者由G生成的假图 G(x,s).

在这里插入图片描述

2 训练目标

2.1Adversarial objective.

对抗损失:
训练期间,随机采样隐变量z和领域y,通过F函数,生成风格编码s ,
风格编码: s ˉ = F y ˉ ( z ) 风格编码: \bar s=F_{\bar y}(z) 风格编码:sˉ=Fyˉ(z)
生成网络G,将图片X和上面的风格编码S作为输入,生成图片:
生成图片: G ( x , s ˉ ) 生成图片: G(x,\bar s) 生成图片:G(x,sˉ)
对抗损失函数为:
L a d v = E x , y [ l o g D y ( x ) ] + E x , y ˉ , z [ l o g ( 1 − D y ˉ ( G ( x , s ˉ ) ) ) ] ( 1 ) L_{adv}=E_{x,y}[logD_y(x)]+E_{x,\bar y,z}[log(1-D_{\bar y}(G(x,\bar s)))] \qquad (1) Ladv=Ex,y[logDy(x)]+Ex,yˉ,z[log(1Dyˉ(G(x,sˉ)))](1)

D_y:是y领域的判别器
F: 是提供y领域的风格编码s
G:输入图片和风格编码s,生成新图片

2.2 Style reconstruction

风格重构损失
使得前后的风格距离最小
L s t y = E x , y ˉ , z [ ∣ ∣ s ˉ − E y ˉ ( G ( x , s ˉ ) ) ∣ ∣ 1 ] ( 2 ) L_{sty}=E_{x,\bar y ,z}[||\bar s-E_{\bar y}(G(x,\bar s))||_1] \qquad (2) Lsty=Ex,yˉ,z[∣∣sˉEyˉ(G(x,sˉ))1](2)
E网络用来生成风格,上面有提到
(前面的E是求均值,后面的 E y ˉ E_{\bar y} Eyˉ是网络)

2.3 Style diversification

为了使生成器G产生更多风格图片,使得不同风格图片的距离尽可能大

L d s = E x , y ˉ , z 1 , z 2 [ ∣ ∣ G ( x , s ˉ 1 ) − G ( x , s ˉ 2 ) ∣ ∣ 1 ] ( 3 ) L_{ds}=E_{x,\bar y,z_1,z_2}[||G(x,\bar s_1)-G(x,\bar s_2)||_1]\qquad (3) Lds=Ex,yˉ,z1,z2[∣∣G(x,sˉ1)G(x,sˉ2)1](3)

s ˉ 1 和 s ˉ 2 \bar s_1和\bar s_2 sˉ1sˉ2是F在隐变量 z 1 和 z 2 条件下生成的 s ˉ i = F y ˉ ( z i ) f o r i ∈ 1 , 2 z_1和z_2条件下生成的 \bar s_i =F_{\bar y}(z_i) \quad for \quad i \in {1,2} z1z2条件下生成的sˉi=Fyˉ(zi)fori1,2

2.4 cycle consistency loss

循环一致损失
使得经过变换后的X与之前的X距离最小
L c y c = E x , y , y ˉ , z [ ∣ ∣ x − G ( G ( x , s ˉ ) , s ^ ) ∣ ∣ 1 ] ( 4 ) L_{cyc}=E_{x,y,\bar y,z}[||x-G(G(x,\bar s),\hat s)||_1] \qquad (4) Lcyc=Ex,y,yˉ,z[∣∣xG(G(x,sˉ),s^)1](4)

s ^ = E y ( x ) \hat s=E_y(x) s^=Ey(x)是E网络估计的风格code,y是原始的X的领域,使生成器G学会去保留原始的X的特征

2.5 full objective

将上面的损失函数求和,其中DS是最大化距离(所有用减号),其他是最小化
在这里插入图片描述

3 代码实现-网络

3.1 生成器网络:G网络

有多个卷积层组成
输入:图片 和风格编码s,
输入图片x shape [batch_size,3,512,512] ;s shape [batch_size,64]
输出:x_fake shape: [4,3,512,512]

        self.from_rgb = nn.Conv2d(3, dim_in, 3, 1, 1) #(in_channels,out_channels,kernel_size,stride,padding)
        self.encode = nn.ModuleList()
        self.decode = nn.ModuleList()
        self.to_rgb = nn.Sequential(
            nn.InstanceNorm2d(dim_in, affine=True),
            nn.LeakyReLU(0.2),
            nn.Conv2d(dim_in, 3, 1, 1, 0))

图片和风格编码会作如下融合,风格编码输出,gamma 和beta,然后和norm后的图片X进行如下计算 (1 + gamma) * self.norm(x) + beta

    def forward(self, x, s):
        h = self.fc(s)
        h = h.view(h.size(0), h.size(1), 1, 1)
        gamma, beta = torch.chunk(h, chunks=2, dim=1)
        return (1 + gamma) * self.norm(x) + beta

  1. 损失函数
    生成器生成的图片,判别器判别为假
 x_fake = nets.generator(x_real, s_trg, masks=masks)
out = nets.discriminator(x_fake, y_trg)
loss_fake = adv_loss(out, 0)

3.2 MappingNetwork:F网络

由多层线性层组成
模型输入是隐变量z(随机生成)shape: [batch_size,dim],和风格领域y shape:[batch_size]
经过共享层后,对每个风格领域分别输出风格编码s, 输出 shpae [batch_size,64]

def forward(self, z, y):
    h = self.shared(z)
    out = []
    for layer in self.unshared:
        out += [layer(h)]
    out = torch.stack(out, dim=1)  # (batch, num_domains, style_dim)
    idx = torch.LongTensor(range(y.size(0))).to(y.device)
    s = out[idx, y]  # (batch, style_dim)
    return s

3.3 StyleEncoder :E网络

输入x,y:
图片x shape [batch_size,3,256,256],领域风格 y shape [batch_size]
输出:
风格编码s shape [batch_size]

    def forward(self, x, y):
        h = self.shared(x)
        h = h.view(h.size(0), -1)
        out = []
        for layer in self.unshared:
            out += [layer(h)]
        out = torch.stack(out, dim=1)  # (batch, num_domains, style_dim)
        idx = torch.LongTensor(range(y.size(0))).to(y.device)
        s = out[idx, y]  # (batch, style_dim)
        return s

3.4 Discriminator:D网络

1) 模型输入输出
输入图片X,及对应的风格y
x shape [4,3,256,256] :[batch_size,channel_num,WH]
y为风格编码[1,1,1,0 ]:batch_size长度大小
输出shap[batch_size]:batch_size长度大小

        out = self.main(x)  # x shape  [4,3,256,256]
        out = out.view(out.size(0), -1)  # (batch, num_domains) # out shape ; [4,2]
        idx = torch.LongTensor(range(y.size(0))).to(y.device)
        out = out[idx, y]  # (batch)
        return out  # out shape [4,]

4 代码实现-损失函数

4.1 判别器损失函数

使所有真实的图片风格预测为1,
使所有G网络生成的图片预测为0

  1. 真实图片判断为真
out = nets.discriminator(x_real, y_org)
loss_real = adv_loss(out, 1)

二分类交叉熵损失

def adv_loss(logits, target):
assert target in [1, 0]
targets = torch.full_like(logits, fill_value=target)
loss = F.binary_cross_entropy_with_logits(logits, targets)
return loss

  1. 生成器生成的图片,判别器判别为假
 x_fake = nets.generator(x_real, s_trg, masks=masks)
out = nets.discriminator(x_fake, y_trg)
loss_fake = adv_loss(out, 0)
  1. 正则化损失
 loss_reg = r1_reg(out, x_real)
 def r1_reg(d_out, x_in):
    # zero-centered gradient penalty for real images
    batch_size = x_in.size(0)
    grad_dout = torch.autograd.grad(
        outputs=d_out.sum(), inputs=x_in,
        create_graph=True, retain_graph=True, only_inputs=True
    )[0]
    grad_dout2 = grad_dout.pow(2)
    assert(grad_dout2.size() == x_in.size())
    reg = 0.5 * grad_dout2.view(batch_size, -1).sum(1).mean(0)
    return reg
  1. 判别器总损失
    真实图片判断为真+生成器图片判别为假+ 正则化损失
loss = loss_real + loss_fake + args.lambda_reg * loss_reg

4.2 生成器损失函数

  1. 使判别器将生成的图片全预测为真
    x_fake = nets.generator(x_real, s_trg, masks=masks)
    out = nets.discriminator(x_fake, y_trg)
    loss_adv = adv_loss(out, 1)
  1. 使真实图片和生成图片的E网络风格编码s,距离最小
    # style reconstruction loss
     s_trg = nets.style_encoder(x_ref, y_trg)
    s_pred = nets.style_encoder(x_fake, y_trg)
    loss_sty = torch.mean(torch.abs(s_pred - s_trg))

3)多样性损失函数
使得不同隐变量z 生成的风格编码s,最终生成的x_fake 距离尽可能大

    x_fake = nets.generator(x_real, s_trg, masks=masks)
    x_fake2 = nets.generator(x_real, s_trg2, masks=masks)
    x_fake2 = x_fake2.detach()
    loss_ds = torch.mean(torch.abs(x_fake - x_fake2))
  1. 循环一致损失
    使重构后的x_rec和原x_real距离小
    s_org = nets.style_encoder(x_real, y_org)
    x_rec = nets.generator(x_fake, s_org, masks=masks)
    loss_cyc = torch.mean(torch.abs(x_rec - x_real))
  1. 生成器总损失
    生成器图片判断为真+真实图片和生成图片的风格编码s距离最小+不同隐变量z 生成的风格编码s距离大+重构前后的x距离小
    loss = loss_adv + args.lambda_sty * loss_sty \
        - args.lambda_ds * loss_ds + args.lambda_cyc * loss_cyc
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
StarGAN v2是一种先进的图像生成模型,旨在将一组输入图像转换为多个可能的目标域图像。该模型具有许多有用的功能和创新。 首先,StarGAN v2建立在StarGAN的基础上,通过引入一个新的概念,即多个生成器和判别器,大大提高了模型的生成能力。每个生成器与一个特定目标域相关联,并且可以从输入图像生成与目标域相关的图像。多个判别器用于提供有关输入图像和生成图像之间的真实性的反馈,从而帮助生成更高质量的图像。 其次,StarGAN v2引入了一个新的概念称为样式代码。样式代码是一个向量,代表了输入图像和目标域之间的潜在特征。通过改变样式代码的值,可以在目标域中生成具有不同外观和特征的图像。这使得模型更加灵活和可控,用户可以根据需要对图像进行个性化的转换。 另外,StarGAN v2还引入了两个重要的改进,称为判别器样式适应和循环一致性损失。判别器样式适应用于提高判别器的性能,使其能够更好地区分生成图像和目标域中真实图像之间的区别。循环一致性损失则用于确保生成器能够在两个目标域之间进行无缝转换,而不会丢失细节或信息。 最后,StarGAN v2通过使用特征对齐损失进一步提高了生成图像的质量。特征对齐损失用于确保在生成图像和真实图像之间的特征分布保持一致,从而使得生成图像更加逼真和真实。 总之,StarGAN v2是一个令人印象深刻的图像生成模型,通过引入多个生成器和判别器、样式代码、判别器样式适应、循环一致性损失和特征对齐损失,实现了高质量和高度可控的图像转换。它在许多应用领域,如人脸生成和图像风格迁移中具有巨大的潜力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值