配置cuda+cudnn

在Ubuntu16.04系统上,使用RTX2080显卡和驱动415,通过Anaconda3安装的CUDA和CUDNN导致TensorFlow-gpu运行时卡死。问题源于环境配置不兼容。解决方案包括:确认显卡驱动、CUDA和CUDNN版本匹配;避免使用Anaconda直接安装TensorFlow-gpu;手动下载CUDA和CUDNN并配置环境变量;安装cudnn后测试验证。最终成功配置为CUDA 9.0 + CUDNN 7.1.4,可运行TensorFlow-gpu 1.12。
摘要由CSDN通过智能技术生成

系统配置是ubuntu16.04+RTX2080+显卡驱动415+anaconda3
cuda和cudnn是conda安装的清华源上的cudatoolkit8+cudnn7
(conda install tensorflow-gpu==1.6 时自动安装了依赖包包括了cudatoolkit和cudnn,不能选)
问题:运行tensorflow一个简单的卷积函数tf.nn.conv2d时程序卡死,直接结束进程,系统卡死
报错:(Process finished with exit code 134 (interrupted by signal 6: SIGABRT))

明显是环境配置问题,挣扎了俩天,得出以下结论。
显卡决定了显卡驱动版本,显卡驱动一定程度上决定cuda版本,cudnn对应cuda版本下载,cuda和cudnn版本决定了tensorflow版本。
1、rtx2080的linux系统下只支持415、410、418版本,可以去官网查,sudo ubuntu-drivers devices方法也好使,sudo apt-get install nvidia-415安装驱动的方法比官网下载安装更方便(除了下载慢),安装好后重启。
2、重新安装显卡驱动前先把原来的驱动卸干净了再装新的sudo apt remove --purge nvidia*先把原来的cuda卸载干净了再装cudasudo /usr/local/cuda-9.0/bin/uninstall_cuda_9.0.pl
3、不要用anaconda直接安装的tensorflow-gpu,流氓打包安装的cud

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值