函数最值问题的常用解法_高中数学:无理函数最值问题的常见解法

本文探讨了高中数学竞赛中涉及二次根号下含有自变量的无理函数最值和值域问题的多种解题方法,包括换元法、函数单调性、均值不等式、柯西不等式和构造几何模型等。通过实例解析,展示了这些方法在实际解题中的应用和灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二次根号下含有自变量的无理函数的最值或值域问题在高中数学竞赛中屡见不鲜,题型丰富多彩解法灵活多变

1、换元后转化为二次函数求解

78b1736edaf03a7c6168c627cd85b422.png

2444e5631a64bec2153bd1c8acfec533.png

997aa315f6e5e4079468b7617ae7ef24.png

点评构造一元二次方程,用判别式并结合其它关系求解,但要注意等号能否成立。

4、用y表示x然后利用定义域和不等关系求解

4a55170556e668305b32105ada07ed3e.png

点评:如果能从函数关系式中用y来表示x,则可利用定义域或其它关系列不等式求函数值域。

5、用函数单调性求解

8(2015年江西省预赛试题)

9ce78fc26210478217328dfb7bb7882c.png

fe22691f4fb699fd869e3b21bc3a2580.png

点评:用函数的单调性求函数最值或值域是一种常见方法,本解法是运用单调函数的性质来判断函数的单调性,本题还可用导数来判断函数的单调性,读者可尝试解决。

6、用均值不等式求解

例9(2012年湖北省高中数学竞赛题)

ad0ea50d91841c18e121eec2a59109a9.png

点评:这里二次根号下是一个分式函数,象这样分子分母分别为一次函数和二次函数时,通过换元变形后用均值不等式求解效果较好。

 7、利用柯西不等式求最值

fba26e6e325a0d10e823fb522bb831d3.png

点评:本解法根据式子的轮换对称性通过“不妨设”去掉绝对值,然后用柯西不等式求得最大值。

8、构造几何模型求解

例11(2016年河北省高三年级数学竞赛第5题)求函数

30f2376853d6a0a37b34b4672877a009.png

c3a844ac13be1c30211d83fba320fcdc.png

43378bd171008ed1fcf0e2142126fb56.png

9ca329f89afd93e71f30c12b97a3677b.png

免责声明:文章内容来源于:网络。以上图文,旨在分享,版权归原作者所有。如有侵权,请联系我们立刻删除

f3d3cd3fc312e37d9d48525091d65a32.png

4144c9cfed85e1a23fa42b8584f04278.png

92ba9be20963e20c530cfe728ba2c740.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值