python 多维数组 相关性计算_python – 计算两个多维数组之间的相关系数

本文介绍了如何在Python中计算两个2D数组之间的相关性,提供了corr2_coeff函数实现,并对比了与其他方法的性能。内容包括:1. 使用np.dot进行简单相关性计算;2. 自定义函数corr2_coeff详细步骤;3. 不同大小数组的性能测试;4. 循环pearsonr方法的运行时比较。
摘要由CSDN通过智能技术生成

两个2D数组之间的相关性(默认“有效”情况):

您可以像这样简单地使用矩阵乘法np.dot –

out = np.dot(arr_one,arr_two.T)

与两个输入数组的每个成对行组合(row1,row2)之间的默认“有效”情况的相关性将对应于每个(row1,row2)位置处的乘法结果.

两个2D阵列的行方向相关系数计算:

def corr2_coeff(A,B):

# Rowwise mean of input arrays & subtract from input arrays themeselves

A_mA = A - A.mean(1)[:,None]

B_mB = B - B.mean(1)[:,None]

# Sum of squares across rows

ssA = (A_mA**2).sum(1);

ssB = (B_mB**2).sum(1);

# Finally get corr coeff

return np.dot(A_mA,B_mB.T)/np.sqrt(np.dot(ssA[:,None],ssB[None]))

这是基于How to apply corr2 functions in Multidimentional arrays in MATLAB的解决方案

标杆

本节将运行时性能与针对generate_correlation_map&amp ;;的提议方法进行比较.基于循环pearsonr的方法在other answer.中列出(取自函数test_generate_correlation_map(),在其末尾没有值正确性验证码).请注意,建议方法的时间还包括在开始时检查两个输入数组中是否有相同数量的列,这也是在另一个答案中完成的.下面列出了运行时.

情况1:

In [106]: A = np.random.rand(1000,100)

In [107]: B = np.random.rand(1000,100)

In [108]: %timeit corr2_coeff(A,B)

100 loops, best of 3: 15 ms per loop

In [109]: %timeit generate_correlation_map(A, B)

100 loops, best of 3: 19.6 ms per loop

案例#2:

In [110]: A = np.random.rand(5000,100)

In [111]: B = np.random.rand(5000,100)

In [112]: %timeit corr2_coeff(A,B)

1 loops, best of 3: 368 ms per loop

In [113]: %timeit generate_correlation_map(A, B)

1 loops, best of 3: 493 ms per loop

案例#3:

In [114]: A = np.random.rand(10000,10)

In [115]: B = np.random.rand(10000,10)

In [116]: %timeit corr2_coeff(A,B)

1 loops, best of 3: 1.29 s per loop

In [117]: %timeit generate_correlation_map(A, B)

1 loops, best of 3: 1.83 s per loop

另一种基于循环pearsonr的方法似乎太慢,但这里是一个小数据的运行时 –

In [118]: A = np.random.rand(1000,100)

In [119]: B = np.random.rand(1000,100)

In [120]: %timeit corr2_coeff(A,B)

100 loops, best of 3: 15.3 ms per loop

In [121]: %timeit generate_correlation_map(A, B)

100 loops, best of 3: 19.7 ms per loop

In [122]: %timeit pearsonr_based(A,B)

1 loops, best of 3: 33 s per loop

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值