使用国内镜像网址离线下载安装python相关包(whl文件)教程

在配置Python环境时,为解决线上安装包速度慢或无网络的问题,可以采用离线安装方法。通常,人们会从pypi.org下载包,但速度可能较慢。文章推荐使用国内镜像如TsinghuaUniversity的镜像来提高下载速度。例如,要下载numpy包,可访问https://pypi.tuna.tsinghua.edu.cn/simple/numpy/选择所需版本,下载whl文件后,通过pipinstall命令进行离线安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当我们配置python环境时,经常都需要安装各种包,然而,我们会碰到,线上安装包时速度慢,或者服务器没有连网的困难。在这种情况下,我们需要进行离线安装各种包。

离线安装有两种方式,网上大多数的博主们都是推荐使用的这个网址(https://pypi.org/),这个网址国内可以访问,但是下载速度极其的慢。接下来,我们将介绍如何使用国内镜像进行离线下载python相关包

主要步骤:

  1. 我们现要下载example包,那么我们打开链接 https://pypi.tuna.tsinghua.edu.cn/simple/examle(注:当然我们肯定是打不开这个链接的,因为不存在example包)。举个例子来说,如果我们要下载numpy包,那么就直接打开链接:https://pypi.tuna.tsinghua.edu.cn/simple/numpy/然后选择自己想安装的numpy包版本即可。其他的python包下载教程上同。
  2. 然后我们直接pip install *.whl即可。其中*.whl就是我们安装的离线包。

通过上述两个步骤,我们就可以很快速的离线安装我们的python包。

<think>好的,用户想知道如何在vLLM NPU上部署大模型。首先,我需要回顾一下vLLM的基本信息和相关引用内容。根据引用[1],vLLM是一个高效的推理和部署系统,支持多种大语言模型,并且有高效的内存管理和高吞吐量。但用户提到的是NPU部署,这可能涉及到特定的硬件环境,比如华为的昇腾NPU或者英特尔的神经计算棒等。 接下来,查看现有的引用是否有关于NPU的信息。引用[4]提到了昇腾(Ascend)的路径,安装了一些依赖项,这可能与NPU有关。而引用[5]中的机器配置使用的是GTX 1650显卡,属于GPU,不是NPU。引用[2]提到了在酷睿™ Ultra处理器上部署,可能涉及CPU或集成NPU的情况,比如Intel的某些处理器带有NPU单元。 需要确认vLLM是否官方支持NPU。根据现有资料,vLLM主要针对GPU优化,尤其是通过PagedAttention管理显存。但NPU可能需要特定的适配,比如使用OpenVINO等工具进行模型优化。例如,引用[2]中使用了OpenVINO™与vLLM结合在酷睿处理器上部署,这可能涉及NPU的使用。 因此,可能的步骤括:环境准备(安装NPU驱动和工具链)、模型转换(将模型转换为NPU支持的格式)、配置vLLM以使用NPU、验证部署。同时需要注意依赖项安装,如引用[4]中的昇腾相关组件。此外,可能需要进行模型并行或调整批次处理以适应NPU的内存限制,如引用[3]提到的卡数和序列长度支持。 用户可能需要参考官方文档或社区资源,如昇腾的ATB模型库或OpenVINO的集成方法。另外,检查是否有社区贡献的NPU支持分支或插件,因为vLLM是开源的,可能有第三方扩展。最后,确保示例代码或教程中的模型路径正确,如引用[2]中的本地路径修改。</think>### 如何在vLLM NPU上部署大模型 #### 1. **环境准备** - **硬件要求**:确保NPU设备(如昇腾Ascend系列)已正确安装驱动和固件,并与主机系统兼容[^4][^5]。 - **基础依赖**: ```bash # 昇腾NPU环境示例(需根据具体型号调整) cd /usr/local/Ascend/atb-models pip install -r requirements/models/requirements_qwen2_vl.txt -i https://pypi.tuna.tsinghua.edu.cn/simple [^4] ``` #### 2. **模型适配与转换** - **模型格式转换**:将大模型转换为NPU支持的格式(如OM模型)。使用昇腾的ATC工具: ```bash atc --framework=pt --model=your_model.onnx --output=model_ascend --soc_version=Ascend910 ``` - **vLLM集成**:确保vLLM支持NPU后端。目前vLLM主要面向GPU,但可通过**分布式推理**或**异构计算框架**(如OpenVINO)间接实现[^2]。 #### 3. **配置vLLM与NPU协同工作** - **代码示例**(基于OpenVINO + NPU): ```python from openvino import Core core = Core() model = core.read_model("phi-3-mini-4k-instruct.xml") # 转换后的NPU模型 compiled_model = core.compile_model(model, "NPU") # 指定NPU设备 ``` 需将模型路径替换为本地NPU适配的版本[^2]。 #### 4. **性能优化** - **内存管理**:NPU内存有限,需调整`max_model_len`和`tensor_parallel_size`参数,参考vLLM的**分布式推理**配置[^3]。 - **批处理策略**:使用`continuous batching`减少NPU空闲时间,提升吞吐量[^1]。 #### 5. **验证部署** - **测试脚本**: ```bash python -m vllm.entrypoints.api_server --model=path/to/npu_model --tensor-parallel-size=1 --dtype=float16 ``` 检查日志是否显示NPU设备调用成功[^5]。 --- ### 注意事项 1. **兼容性检查**:目前vLLM对NPU的**原生支持有限**,需依赖厂商提供的定制化工具链(如昇腾CANN)。 2. **社区资源**:关注vLLM开源社区对NPU的适配进展,部分功能可能处于实验阶段[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值