《Spelling Error Correction with Soft-Masked BERT》阅读记录

本文介绍了Soft-Masked BERT,这是一种结合错误检测网络和基于BERT的纠正网络的神经结构,专门用于拼写错误纠正任务。通过软掩蔽技术,模型能更有效地利用全局上下文信息进行错误检测和修正,表现出优于仅使用BERT的现有方法的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Spelling Error Correction with Soft-Masked BERT》

To be published at ACL 20202020.5.15

链接:https://arxiv.org/abs/2005.07421

摘要

彼时CSC的SOTA方法:在语言表示模型BERT的基础上,在句子的每个位置从候选词列表中选择一个字符进行纠正(包括不纠正)。

但这一方法能力不是最强悍的,因为BERT本身没有足够的能力来检测每个位置是否有错误,显然是由于使用掩码语言建模对其进行预训练的方式。

本文工作:提出了一个由错误检测网络基于BERT纠正错误网络的神经网络结构。

  • 二者使用本文所述的Soft-Masking(软遮蔽/软掩码)技术相连

Soft-masked BERT 也可用于其他语言

方法性能优于基线。

结论

提出了一种新的用于拼写错误校正的神经网络结构(主要是CSC上)——Soft-Masked BERT。

  • 检测网络识别给定句子中可能不正确的字符,并对字符进行软屏蔽(soft-mask)
  • 校正网络以软屏蔽字符为输入,对字符进行校正

软掩蔽技术是通用的,并且在其他检测-校正任务中可能有用

在两个数据集上的实验结果表明:软屏蔽BERT明显优于仅利用BERT的现有方法

未来工作

计划将Soft-Masked BERT扩展到其他问题,如语法错误纠正,并探索实现检测网络的其他可能性。

介绍

拼写检查任务

  • 在词级或字符级上,改正文章中的拼写错误 (Yu and Li, 2014; Y u et al., 2014; Zhang et al., 2015; Wang et al., 2018b; Hong et al., 2019; Wang et al., 2019)。

对很多自然语言应用起十分关键的作用,比如

  • 搜索 (Martins and Silva, 2004; Gao et al., 2010)
  • 光学字符识别 (Afliet al., 2016; Wang et al., 2018b)
  • 文章打分 (Burstein and Chodorow, 1999)

这篇文章在字符(character)级别上考虑中文拼写错误问题。

拼写错误纠正的难点

  1. 需要对世界的认识
  2. 一些错误需要推理

拼写错误纠正

  • 采用机器学习和深度学习 (Yu et al., 2014; Tseng et al., 2015; Wang et al., 2018b).

    • Zhang et al. (2015) 提供了一个CSC的统一框架:错误检测、候选词生成、最终候选选择(改错)使用传统机器学习。

    • Wang et al. (2019) 提供带有复制机制的seq2seq模型:输入句→拼写错误被纠正后的新句子

      </
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值