【大模型应用开发极简入门】其他OpenAI API和功能:embedding(文本之间的向量相关性)、Moderation(内容审核模型)、Image generation

除了文本补全功能,OpenAI用户还可以使用其他一些功能。本文介绍embedding、moderation、Image g eneration等功能。

 

一. embedding:文本之间的向量相关性

OpenAI的文本嵌入技术衡量文本字符串的相关性。根据文本的向量相关性Embeddings可以:

  1. 搜索(结果按与查询字符串的相关性排名)
  2. 聚类(将文本字符串按相似性分组)
  3. 推荐(推荐与相关文本字符串相关的项目)
  4. 异常检测(识别与其他文本关联较少的异常值)
  5. 多样性测量(分析相似性分布)
  6. 分类(将文本字符串按其最相似的标签分类)

嵌入是一组浮点数构成的向量(列表)。两个向量之间的距离衡量它们之间的相关性。较小的距离表明高相关性,而较大的距离表明低相关性。

embeddings的价格,参考官网:https://openai.com/api/pricing/ 。
 
截止到24年5月29日,模型的价格
在这里插入图片描述

 

1. 使用embedding

result = openai.Embedding.create(
    model="text-embedding-ada-002", input="your text"
)

通过以下方式访问嵌入:

result['data']['embedding']

结果嵌入是一个向量,即一个浮点数数组。

OpenAI的API 的完整文档:https://platform.openai.com/docs/guides/embeddings/use-cases

 

2. embedding的基本逻辑

在ML领域,特别是在处理语言模型时,我们会遇到embedding这一重要概念。

embedding将数据转换为数值格式

  • embedding将分类数据ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

roman_日积跬步-终至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值