文章目录
除了文本补全功能,OpenAI用户还可以使用其他一些功能。本文介绍embedding、moderation、Image g eneration等功能。
一. embedding:文本之间的向量相关性
OpenAI的文本嵌入技术衡量文本字符串的相关性。根据文本的向量相关性Embeddings可以:
- 搜索(结果按与查询字符串的相关性排名)
- 聚类(将文本字符串按相似性分组)
- 推荐(推荐与相关文本字符串相关的项目)
- 异常检测(识别与其他文本关联较少的异常值)
- 多样性测量(分析相似性分布)
- 分类(将文本字符串按其最相似的标签分类)
嵌入是一组浮点数构成的向量(列表)。两个向量之间的距离衡量它们之间的相关性。较小的距离表明高相关性,而较大的距离表明低相关性。
embeddings的价格,参考官网:https://openai.com/api/pricing/ 。
截止到24年5月29日,模型的价格
1. 使用embedding
result = openai.Embedding.create(
model="text-embedding-ada-002", input="your text"
)
通过以下方式访问嵌入:
result['data']['embedding']
结果嵌入是一个向量,即一个浮点数数组。
OpenAI的API 的完整文档:https://platform.openai.com/docs/guides/embeddings/use-cases
2. embedding的基本逻辑
在ML领域,特别是在处理语言模型时,我们会遇到embedding这一重要概念。
embedding将数据转换为数值格式
- embedding将
分类数据
ÿ