傅里叶级数系数的完整详细算法

本文详细介绍了傅里叶级数的基础,包括三角函数相关公式、级数展开公式及其系数计算方法。重点讲解了如何通过傅立叶级数实现数字滤波,通过去除高次谐波达到信号平滑和逼近理想波形的效果,配以滤波效果图展示应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傅里叶级数系数的完整详细算法

一、三角函数相关公式和定积分

在分析傅里叶级数之前,一定要先熟悉三角函数的相关公式,以及三角函数的积分。

1、两角和公式:

sin(α+β) = sin(α) * cos(β) + cos(α) * sin(β)

sin(α-β) = sin(α) * cos(β) - cos(α) * sin(β)

cos(α+β) = cos(α) * cos(β) - sin(α) * sin(β)

cos(α-β) = cos(α) * cos(β) + sin(α) * sin(β)

2、积化和差公式:

sin(α) * cos(β) = [sin(α+β) + sin(α-β)] / 2

cos(α) * sin(β) = [sin(α+β) - sin(α-β)] / 2

cos(α) * cos(β) = [cos(α+β) + cos(α-β)] / 2

sin(α) * sin(β) = [cos(α-β) - cos(α+β)] / 2

二、傅立叶级数:

1、傅立叶级数展开公式

对于一个周期为T的函数f(t),可以将其展开为以下的形式:

2、傅立叶级数的系数计算

1)、对傅里叶级数展开公式两边同时积分,可以计算到a0

2)、对傅里叶级数展开公式两边同时乘以cos(kωt)积分,然后等式两边同时求积分,就可以计算到ak,注意:k>=1。

3)、对傅里叶级数展开公式两边同时乘以sin(kωt)积分,然后等式两边同时求积分,就可以计算到bk,注意:k>=1。

三、傅立叶级数滤波的原理:

如果我们将上式中,去掉省略号后面的项目,就可以得到新的函数表达式,如下:

这就是去掉5次以上谐波后的新函数,也就是我们求的滤波函数。

在实际使用中,我们通常会使用“傅里叶级数”进行数字滤波,其原理如下:

已知一维数组MyArray[]是周期数f(t)的一部分数据,且在MyArray[]数据中至少有一个周期数据是函数f(t)的最小周期数据。

因此,我们可以将MyArray[]当作周期函数f(t)来对待,就可以使用傅里叶级数来表示。

在傅里叶级数展开前,需要先计算傅里叶级数的系数:

a0

a1,a2,...,ak

b1,b2,...,bk

通过傅里叶级数展开式,我们发现,如果去掉“高次谐波的数据”,得到数据波形,就会更加平滑,且更接近“理想波形”。

四、滤波效果图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值