ubuntu16.04下配置nvdia驱动+cuda+cudnn+anaconda+tensorflow-gpu环境
网上各种帖子很多,但是针对自己电脑具体情况,不能完全照搬别人解决方案。本文安装环境为ubuntu16.04,独显为NVIDIA GeForce G7X 960M,集显为Inter® HD Graphics 530。安装版本为nvidia-384,cuda8.0,cudnn5.1,tensorflow-gpu1.2.0。
现把配置过程中遇到的奇葩问题及解决方案总结归纳如下。
一、NVIDIA显卡驱动配置
1.禁用ubuntu自带驱动nouveau
终端输入
sudo gedit /etc/modprobe.d/blacklist.conf
在最后一行添加blacklist nouveau
,然后
sudo update-initramfs -u
重启电脑后输入lsmod | grep nouveau
,无输出代表禁用成功。
2.NVIDIA驱动安装
本文所述方法在图形界面进行。
首先查看显卡支持的驱动版本
sudo apt-cache search nvidia-*
安装驱动(我装的是384版本)
sudo apt-get install nvidia-384
如报错,则更新源,运行
sudo apt-get upgrade
sudo apt-get update
安装完成后terminal下执行nvidia-smi
查看是否安装成功。
卸载驱动方法为
sudo apt-get remove --purge nvidia-384
注:采用命令行界面的安装方法一直存在循环登陆问题,原因大概是电脑双显卡(集显,独显)的问题,用遍网上所有方法均未解决。本文所述方法过程中并未禁用x service。
二、安装cuda
运行tensorflow最好安装cuda整数版本,如8.0,9.0,10.0等,否则在部分电脑上可能存在不明错误。要安装与nvidia驱动匹配的cuda版本。
三、安装cuDNN
NVIDIA cuDNN是用于深度神经网络的GPU加速库。NVIDIA cuDNN官网下载与cuda版本匹配的cuDNN。
四、安装anaconda
anaconda帮助自动安装大部分科学计算和数据处理依赖的库, 同时自己搞定环境变量等的配置,管理起环境来非常方便。
去anaconda官网下载linux版本的安装程序。执行bash Anaconda3-4.4.0-Linux-x86_64.sh
安装。不建议安装到root中,最好安装到home下,选择默认路径就可以了。
如出现command not found: conda的问题,需要
export PATH="/home/[your_name]/anaconda/bin:$PATH"
source ~/.bash_profile
五、安装tensorflow-gpu
首先创建tensorflow环境,conda create -n tensorflow python=3.5
.激活tensorflow环境source activate tensorflow
。
pip install tensorflow-gpu==1.2
命令行敲入python,输入import tensorflow as tf出现以下错误(由于当时忘记截图,图片来源于参考资料中)
这是和tensorflow环境变量有关,需每次在import tensorflow as tf之前敲入一下两句话:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/loacal/cuda/lib64: /usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda
每次都敲会很麻烦,也可以通过添加环境变量解决这个问题,即
gedit ~/.bashrc
gedit ~/.bash_profile
打开这两个文件,在这两个文件末尾都添加export两句话,即可解决。
通过以下测试程序,测试tensorflow是否配置成功。如正常运行,则输出b'hello tensorflow'
import tensorflow as tf
hello = tf.constant('hello,tensorflow')
sess = tf.Session()
print(sess.run(hello))
tensorflow-gpu测试程序网上也有,这里就不赘述
之后使用时要先激活tensorflow环境
source activate tensorflow
python
>>
终端退出python用Ctrl+D。
未完待续
参考资料
1.Ubuntu下安装nvidia显卡驱动(安装方式简单)
2.NVIDIA CUDA Toolkit Release Notes
3.Tensorflow不同版本要求与CUDA及CUDNN版本对应关系
4.安装与卸载tensorflow-gpu
5.[Anaconda] command not found: conda
6.ubuntu14.04上实现faster rcnn_TF的demo程序及训练过程
7.TensorFlow测试程序
8.tensorflow-gpu测试代码