Ubuntu安装英伟达nvidia显卡驱动-CUDA-cuDNN详细步骤

Ubuntu安装英伟达Nvidia显卡驱动-CUDA-cuDNN

我的是英伟达Nvidia RTX 4090,以此为例,其他类似。Ubuntu版本是22.04.

方法1

1.禁用默认显卡驱动

1)打开配置文件

sudo gedit /etc/modprobe.d/blacklist.conf

2)配置文件最后增加

blacklist nouveau

3)保存文件后执行配置生效

sudo update-initramfs -u

2直接在线更新

1)在ubuntu系统中搜到Software update

4d9ddde9282a45dabacc5e979fa8ea77.jpeg

2)点击setting

7c61943d421a4f1b8e012b32e509d15b.png

3)先点击Apply Changes,更新后点击 Restart

06d9c27fb719411295a0af1985a62f60.png

4)查看显卡信息

命令行nvidia-smi会显示当前显卡信息。

0f33ea9bcef045969c846350e5ed58e7.png

3.Wifi驱动无法显示解决

安装英伟达显卡驱动后(比如4090和3090等),可能会把wifi驱动去除,导致wifi无法连接。需要下面方法手工安装wifi驱动。

 

1)查看linux内核版本,根据这个版本号查找需要

uname -r

6.8.0-48-generic

 

2)Google或百度搜索找wifi驱动,使用关键字:

6.8.0-48 linux models iwlwifi

 

3)找到网址

linux-modules-iwlwifi-6.8.0-48-generic : amd64 : Jammy (22.04) : Ubuntu

进入后选择Pocket是security的版本链接

 

39bb840ea8ec4a53a7a10bc3ee137ac4.png

4)点击进入后下载deb文件

c7184ae45f4b47728e1d08edfc206809.png

 

5)安装

sudo dpkg -i 文件名

 

6)重启系统

方法2

1.官网下载对应驱动安装

下面操作都是针对英伟达RTX4090显卡,其他类似。下载网址,有不同的版本,这里下载535版本:

下载 NVIDIA 官方驱动 | NVIDIA

需要知道自己机器显卡型号和安装的操作系统,先点击“搜索”,然后选择下载即可。

1068f74786494369b319fcb9f677f5fd.jpeg

425960caf5dc436e9f58ed6b56ba6343.jpeg

5d0fb25c3dba4a17a10ded88291f5c10.jpeg

0125ce05e22d4cbf8e3ff20ece7f57cc.jpeg

2.安装驱动

1)增加可执行权限

假设下载文件名为 ***.run

给驱动程序文件增加可执行权限:

sudo chmod +x ***.run

 

2)卸载原有驱动

sudo apt-get remove --purge nvidia*

 

3)禁止通用nouveau驱动

sudo gedit /etc/modprobe.d/blacklist.conf

配置文件最后增加

blacklist nouveau

保存文件后执行配置生效

sudo update-initramfs -u

 

4)重启查看

重启后在终端输入如下,没有任何输出表示屏蔽成功

lsmod | grep nouveau

 

5)从界面进入命令行

我这里可以正常进入

sudo telinit 3

如果不行,或者下面,

Ctrl + Alt + F1(到F6),我这里是Ctrl + Alt + F3

 

6)关闭桌面系统

sudo /etc/init.d/gdm3 stop

sudo /etc/init.d/lightdm stop

我的是gdm系统

停止成功

 

7)安装相关的库,一般都是gcc和make

sudo apt-get update

sudo apt install gcc

sudo apt install make

 

8)安装驱动

sudo sh **.run

 

9)gcc驱动问题解决

可能还是会出错,可能和linux版本更新时间有关,因为前期安装不会,后面这个问题出现过。根据提示,查看出错原因

less /var/log/nvidia-installer.log

Failed CC version check

cc: error:unrecognized command-line option  ‘-ftrivial-auto-var-init=zero’

是cc版本引起,需要 gcc-12

 

删除驱动:

sudo apt-get purge nvidia

sudo apt-get autoremove

 

更新 gcc :

sudo apt-get install gcc-12

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12

 

检查版本:

gcc --version

gcc (Ubuntu 12.1.0-2ubuntu1~22.04) 12.1.0

 

重新nvidia驱动:

sudo sh ./NVIDIA-Linux-x86_64-550.67.run --no-opengl-files --no-x-check --no-nouveau-check

 

10)显卡驱动安装过程中

32位兼容库和运行x配置,都选择no,不要安装

 

11)安装后,运行下面可以重回到桌面系统

sudo /etc/init.d/gdm3 start

安装系统的CUDA和cudnn

1.安装CUDA

注意:这里12.2表示支持的最高版本,不是已经安装的,显卡支持不能超过这个版本

d85ac8d1e05f4374872fd50e8f7d1d7c.png

 

需要安装使用pytorch版本对应的CUDA和cudnn版本。

 

打开pytorch官网:PyTorch

查看对应的cuda版本

a3fe97e6ba004a758f5113b396f92db9.png根据pytorch版本确定CUDA版本,这里选择12.1版本,后面部分还

有进一步介绍pytorch的安装。

目前最新的已经有12.4cuda显示。也可以选择用12.4

 

2、打开英伟达cuda官网

https://developer.nvidia.com/cuda-toolkit

fbc41bd3c1ae42859aa8fe4d4e6b790c.png

点击Download Now,进入:

 

ab193f918d5a4838bcb05012c808c9b5.png

点击Archive of Previous CUDA Releases 进入

 

 

6f375f29894a4170bb8db86060f191a1.png选择CUDA Toolkit 12.1.1 (April 2023), Versioned Online Documentation

 

 

9057d15a5d7945788845a431b6a7c572.png逐步选择操作系统Linux、芯片架构x86_64、发行系统Ubuntu 、版本22.04和安装类型runfile,如下图

 

 

如何安装网站有说明,根据说明c181d67272f04f2da7f18c8845c11681.png,先下载

wget https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run

再安装

sudo sh cuda_12.1.1_530.30.02_linux.run

 

会报错,因为没有安装gcc

sudo apt-get update

sudo apt-get install gcc

如果出现gcc版本问题,可能需要安装gcc12,看“安装英伟达显卡驱动-方法2-安装驱动中解决方法”

 

1d2b08a177e74705a6acd67f25a78192.png由于之前安装了驱动,这里取消选择Driver,如果没有安装显卡驱动,这里可以选择安装,具体操作:将光标置于Driver,回车即可,如下图

57f963145840438fbd934875138d0d2f.png光标置于Install,回车安装

 

接下来设置到环境变量

在新终端输入:gedit ~/.bashrc

 

在文件最后输入:

export PATH=/usr/local/cuda-12.1/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64:$LD_LIBRARY_PATH

 

点击Save后关闭该文件

 

在终端输入:source ~/.bashrc

最后验证安装是否成功,在终端输入:nvcc –V

出现下图说明安装成功:

af9284c911464284931b64b222a39730.png

2.安装cudnn

cuDNN的全称为NVIDIA CUDA® Deep Neural Network library,是NVIDIA专门针对深度神经网络(Deep Neural Networks)中的基础操作而设计,用来加速。

 

打开官方链接:https://developer.nvidia.com/cudnn

bd81fc5a72224447bfa0c145f9e3a1d0.png点击Download cuDNN Library按钮进入

3309ec12658040dd83186ec2f8e7aff7.png依次选择操作系统Linux、芯片架构x86_64、发行系统Ubuntu 、版本22.04和安装类型,如下图

 

 

3892e2712e4447b28d1c896ee5f9220f.png

20f6e2c597584206a4ec8538790bbc1e.png

这里官方根据选择的信息,推荐安装cudnn-local-repo-ubuntu2204-9.1.1_1.0-1_amd64.deb

只要执行下面的安装命令即可。下面开始安装。

 

打开终端,输入:

wget https://developer.download.nvidia.com/compute/cudnn/9.1.1/local_installers/cudnn-local-repo-ubuntu2204-9.1.1_1.0-1_amd64.deb

sudo dpkg -i cudnn-local-repo-ubuntu2204-9.1.1_1.0-1_amd64.deb

执行完成后继续输入:

sudo cp /var/cudnn-local-repo-ubuntu2204-9.1.1/cudnn-*-keyring.gpg /usr/share/keyrings/

 

执行完成后继续输入:sudo apt-get update

 

执行完成后继续输入:sudo apt-get -y install cudnn

 

执行完成后安装成功

 

验证cuDNN安装成功,详见官网:https://docs.nvidia.com/deeplearning/cudnn/latest/installation/cross-compiling.html

 

这里交叉编译 位于usr/src/cudnn_sample_v9目录下的mnistCUDNN

具体步骤执行如下命令:

1)cp -r /usr/src/cudnn_samples_v9 $HOME

2)cd $HOME/cudnn_samples_v9/mnistCUDNN

3) sudo make 或者

make clean && make

4)最后输入./mnistCUDNN验证

 

如果没有安装make,执行make命令报错,执行以下两行代码:

sudo apt-get update

sudo apt-get install make

安装make,安装完成后再输入sudo make

 

没有安装 FreeImage 库,也会报错,

终端执行sudo apt-get install libfreeimage-dev安装

sudo apt-get install-essential

如果再有报错,网上一般可以查到解决方法,都是一些库没有安装好

安装即可。

 

安装后编译没有再报错

最后输入./mnistCUDNN验证,终端信息最后出现如下信息表示成功:

 

0d99abd924d7497fa252a58c2703102c.png

查看系统cudnn版本的命令:

cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

a2933b6a239940fba44848ec64e70b52.png

可以看到是9.1.1版本,注意不同机器安装的cudnn_version.h的版本可能不同,根据自己调整。

 

需要注意:在安装人工智能平台框架(Pytorch或TensorFlow)的时候可以指定安装需要的版本CUDA,比如不同的pytorch版本和CUDA版本有严格的对应关系,看后面安装说明。此时会在pytorch的系统中安装对应的CUDA和对应的cudnn,后面会有讲述。

依赖pytorch运行的程序会使用自带安装的CUDA和cudnn,但是系统中很多库和包的安装是需要使用系统的CUDA和cudnn,所以也必须安装,同时和pytorch自带安装的保持一致。

机器学习原理与实践
https://www.bilibili.com/cheese/play/ss27274
优质课程,试听课一定听听,100%好评至今。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值