bzoj4025 二分图 线段树分治+并查集

29 篇文章 0 订阅
5 篇文章 0 订阅

Description


神犇有一个n个节点的图。因为神犇是神犇,所以在T时间内一些边会出现后消失。神犇要求出每一时间段内这个图是否是二分图。这么简单的问题神犇当然会做了,于是他想考考你。

n<=100000,m<=200000,T<=100000,1<=u,v<=n,0<=start<=end<=T

Solution


考虑线段树分治。构成二分图即不存在奇环,我们用按秩合并的带权并查集就可以很方便地做了。

Code


#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)

const int N=200005;

struct edge {int x,y;} e[N],stack[N];

std:: vector <int> vec[N<<2];

int fa[N],dep[N],h[N],d[N],ans[N],top;

int read() {
	int x=0,v=1; char ch=getchar();
	for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
	for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
	return x*v;
}

int find(int x) {
	return !fa[x]?x:find(fa[x]);
}

int get_dis(int x) {
	return !fa[x]?0:(d[x]^get_dis(fa[x]));
}

void ins(int now,int tl,int tr,int l,int r,int x) {
	if (r<tl||l>tr) return ;
	if (tl>=l&&tr<=r) {
		vec[now].push_back(x);
		return ;
	}
	int mid=(tl+tr)>>1;
	ins(now<<1,tl,mid,l,r,x);
	ins(now<<1|1,mid+1,tr,l,r,x);
}

void solve(int now,int l,int r) {
	int wjp=top; bool flag=false;
	for (int i=vec[now].size()-1;~i;--i) {
		edge ed=e[vec[now][i]];
		int x=find(ed.x),y=find(ed.y);
		if (h[x]>h[y]) std:: swap(x,y);
		int dx=get_dis(ed.x),dy=get_dis(ed.y);
		if (x==y) {
			if (!(dx^dy)) flag=true;
			continue;
		}
		fa[x]=y,d[x]=dx^dy^1;
		if (h[x]==h[y]) {
			h[y]++,stack[++top]=(edge) {x,1};
		} else stack[++top]=(edge) {x,0};
	}
	if (!flag) {
		if (l==r) ans[l]=1;
		else {
			int mid=(l+r)>>1;
			solve(now<<1,l,mid);
			solve(now<<1|1,mid+1,r);
		}
	}
	for (;top>wjp;) {
		edge lxf=stack[top--];
		int ff=fa[lxf.x],x=lxf.x;
		fa[x]=0; d[x]=0;
		h[ff]-=lxf.y;
	}
}

int main(void) {
	freopen("data.in","r",stdin);
	int n=read(),m=read(),T=read();
	rep(i,1,m) {
		e[i].x=read(),e[i].y=read();
		int l=read()+1,r=read();
		ins(1,1,T,l,r,i);
	}
	solve(1,1,T);
	rep(i,1,T) puts(ans[i]?"Yes":"No");
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值