Levinson Durbin算法:高效生成LPC系数的递归方法

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:Levinson Durbin算法在数字信号处理和通信领域广泛用于求解线性预测系数,它通过递归过程避免了直接求解Yule-Walker方程的复杂性。该算法利用自相关序列来估计LPC系数,具有计算效率高和数值稳定性好的优点。算法实现包括初始化、递归步骤和更新残差,适用于语音编码、音频压缩和信号分析等领域。MATLAB环境下,利用其强大的向量化和矩阵运算能力,可以简洁地实现此算法,促进信号建模和处理,特别是在资源受限的嵌入式系统中。 Levinson Durbin 算法:使用 Levinson 递归生成线性预测系数,无需求解 Yule-Walker 方程-matlab开发

1. Levinson-Durbin算法概述

1.1 算法的起源与应用

Levinson-Durbin算法是一种用于线性预测编码(LPC)的高效递归算法,它在数字信号处理领域有着广泛的应用。该算法由Levinson于1947年提出,后经Durbin改进,被广泛应用于语音编码、音频信号处理、噪声抑制和回声消除等多个领域。

1.2 算法的重要性

LPCs的重要性在于它们能够捕捉信号的短期预测特性,通过最小化预测误差来对信号进行建模。Levinson-Durbin算法能够快速且稳定地计算出LPCs,这对于实时信号处理尤为重要。

1.3 算法的优势

Levinson-Durbin算法的主要优势在于其递归性质,这使得它在计算效率上优于其他非递归方法。算法通过利用前一步的计算结果来简化当前步骤的计算,大大减少了计算量,这对于处理大量数据的信号处理任务来说,具有显著的性能优势。

// 示例代码:Levinson-Durbin算法的基本结构
function [lpcs, reflection] = levinson durbin(r, order)
    // 初始化参数
    n = length(r);
    phi = zeros(order+1, 1); // 预测系数
    e = zeros(order+1, 1); // 残差能量

    // Levinson-Durbin递归过程
    for k = 1:order
        alpha = -phi(k:-1:1) * r(k:1:end) / (e(k-1) + eps); // 计算反射系数
        phi(k+1) = alpha; // 更新预测系数
        e(k+1) = (1 - alpha * alpha) * e(k); // 更新残差能量
        // 反射系数和预测系数更新过程
    end
    lpcs = phi;
    reflection = alpha;
end

以上代码展示了Levinson-Durbin算法的基本结构,包括初始化、递归更新预测系数和残差能量等步骤。通过这种方式,算法能够高效地计算出线性预测系数(LPCs),为后续的信号处理任务奠定基础。

2. 线性预测系数(LPCs)的计算

线性预测系数(LPCs)是语音信号处理中的关键概念,它们是描述语音信号特征的重要参数。在本章节中,我们将深入探讨LPCs的理论基础、数学模型以及它们与信号建模之间的关系。

2.1 LPCs的理论基础

2.1.1 LPCs的定义和重要性

线性预测系数(LPCs)是一种用于语音信号建模的参数,它基于线性预测的原理,即当前的语音样本可以通过前几个样本的线性组合来预测。LPCs的重要性在于它们能够有效地捕捉语音信号的频谱特性,并用于低比特率的语音编码,提高语音传输的效率。

在数学上,LPCs是通过最小化预测误差的均方值来计算得到的,这个过程涉及到信号的自相关函数。LPCs的个数通常远小于语音信号的样本数,这使得它们在语音编码中非常有用。

2.1.2 LPCs与信号建模的关系

LPCs与信号建模之间的关系是密不可分的。在语音信号处理中,LPCs被用于线性预测模型,该模型假设当前样本可以通过前几个样本的加权和来预测。这种模型假设基于这样一个事实:语音信号具有短期的预测性。

通过LPCs,我们可以构建一个预测器,它能够根据过去的信息来预测当前的信号值。这种预测能力对于语音信号的压缩和重建至关重要,因为它允许我们在编码过程中仅传输预测误差(残差),从而大大减少所需的数据量。

2.2 LPCs的数学模型

2.2.1 LPCs的数学表达式

LPCs的数学模型基于线性预测的自回归模型(AR模型)。假设一个离散时间语音信号序列 ( x[n] ),其可以用前 ( p ) 个样本的线性组合来预测,即:

[ x[n] = -\sum_{k=1}^{p} a_k x[n-k] + e[n] ]

其中,( a_k ) 是LPCs,( p ) 是预测器的阶数,( e[n] ) 是预测误差(残差)。

2.2.2 LPCs的求解方法

求解LPCs通常涉及到Yule-Walker方程,这是一个自相关矩阵的线性方程组。Yule-Walker方程表达了自相关序列与LPCs之间的关系,我们将在第三章详细讨论它。

一个常用的求解方法是利用Levinson-Durbin递归算法,它是一种高效的迭代方法,能够从低阶到高阶逐步求解LPCs。这种方法不仅提高了计算效率,而且降低了对内存的需求。

在本章节中,我们介绍了LPCs的理论基础和数学模型,为后续章节中Levinson-Durbin算法的详细介绍和应用打下了坚实的基础。接下来,我们将深入探讨Yule-Walker方程,这是求解LPCs的关键步骤之一。

3. Yule-Walker方程

3.1 Yule-Walker方程的基本概念

3.1.1 Yule-Walker方程的定义

Yule-Walker方程是一组线性方程,用于在自相关方法中估计线性预测编码器(LPC)的参数。这些方程基于线性预测理论,其中信号被建模为一个自回归过程,其当前样本值可以通过其先前的样本值和一个随机激励(或残差)来预测。Yule-Walker方程将自相关序列与预测系数联系起来,为LPC分析提供了一种统计方法。

3.1.2 Yule-Walker方程的物理意义

在物理意义上,Yule-Walker方程描述了信号样本之间的线性依赖关系。它们表达了这样一个事实:一个信号样本可以被其之前的样本通过一组权重(即预测系数)的加权和来预测。这些权重是通过最小化预测误差的方差来确定的,即找到一个预测系数的集合,使得预测误差的平均功率最小。

3.2 Yule-Walker方程与LPCs的关系

3.2.1 传统求解Yule-Walker方程的方法

传统的求解Yule-Walker方程的方法包括使用矩阵运算,如Cholesky分解或Levinson-Durbin递归算法。这些方法计算效率较高,特别是对于大型系统,但它们在计算和存储需求方面仍然存在一定的挑战。Cholesky分解适用于稳定的系统,而Levinson-Durbin递归算法则利用了Yule-Walker方程的特定结构来减少计算复杂度。

3.2.2 Yule-Walker方程在LPCs计算中的局限性

Yule-Walker方程在LPCs计算中存在一些局限性。例如,它们假设信号是稳定的,即信号的自相关函数是指数衰减的。如果信号是不稳定的或者具有非最小相位特性,那么直接应用Yule-Walker方程可能导致不准确的结果。此外,Yule-Walker方程没有考虑到信号中的非线性或非高斯特性,这可能在某些应用中导致性能下降。

3.2.3 Yule-Walker方程的MATLAB实现

在MATLAB中,我们可以使用 aryule 函数来求解Yule-Walker方程,该函数直接返回线性预测编码器的系数。以下是使用MATLAB求解Yule-Walker方程的基本步骤:

% 假设x是已知的信号样本
x = randn(1, 100); % 生成一个随机信号作为示例

% 计算自相关序列
[pxx, lags] = xcorr(x, 'biased');

% 定义自相关序列的长度
N = length(pxx);

% 提取自相关序列的前N个值
pxx = pxx(1:N);

% 使用aryule函数求解LPCs
[a, e] = aryule(pxx, order);

% 输出预测系数和预测误差
disp('预测系数:');
disp(a);
disp('预测误差:');
disp(e);

在这个例子中, aryule 函数计算了信号 x 的线性预测编码器系数 a 和预测误差 e 。函数的第二个参数 order 表示预测模型的阶数,即LPC的阶数。

3.2.4 Yule-Walker方程的优化

Yule-Walker方程的计算可以进一步优化,特别是在处理大型数据集时。一种方法是使用矩阵求逆引理来避免直接计算矩阵的逆,从而减少计算量。另外,可以采用并行计算和分布式计算技术来加速计算过程,这对于实时信号处理尤为重要。

3.2.5 Yule-Walker方程的应用

Yule-Walker方程在许多领域都有广泛的应用,包括语音编码、音频信号处理、地震数据分析等。在语音编码中,Yule-Walker方程可以用来估计声道的LPC,这对于提高编码效率和语音质量至关重要。在音频信号处理中,它们可以用来预测音乐信号的谐波结构,从而实现高质量的声音合成。

3.2.6 Yule-Walker方程的代码逻辑解读

在上述MATLAB代码中,我们首先计算了信号 x 的自相关序列 pxx 。然后,我们使用 aryule 函数求解Yule-Walker方程,得到LPCs a 和预测误差 e 。这个过程的逻辑是:

  1. 生成一个随机信号 x 作为示例。
  2. 使用 xcorr 函数计算信号的自相关序列 pxx
  3. 提取自相关序列的前N个值。
  4. 使用 aryule 函数求解LPCs和预测误差。
  5. 输出结果。

通过这个过程,我们可以看到Yule-Walker方程在MATLAB中的实际应用,以及如何通过简单的函数调用来实现复杂的计算任务。

3.2.7 Yule-Walker方程的表格和流程图

为了更好地理解Yule-Walker方程的计算过程,我们可以创建一个流程图来描述其步骤:

graph LR
    A[生成信号x] --> B[计算自相关序列pxx]
    B --> C[提取自相关序列]
    C --> D[求解Yule-Walker方程]
    D --> E[输出LPCs和预测误差]

此外,我们还可以创建一个表格来总结Yule-Walker方程的参数和输出:

| 参数 | 描述 | 类型 | | --- | --- | --- | | x | 输入信号样本 | 数组 | | pxx | 自相关序列 | 数组 | | order | LPCs的阶数 | 整数 | | a | 预测系数 | 数组 | | e | 预测误差 | 数值 |

| 输出 | 描述 | | --- | --- | | LPCs | 线性预测编码器系数 | | 预测误差 | 误差的方差 |

3.2.8 Yule-Walker方程的扩展讨论

在信号处理领域,Yule-Walker方程是一个重要的工具,但它并不是唯一的。其他方法,如最大似然估计、最小二乘法等,也可以用来估计LPCs。这些方法在不同的应用场景和假设条件下可能更加有效。例如,在信号非平稳的情况下,可以使用自适应滤波器来估计LPCs,这些滤波器能够跟踪信号的统计特性变化。

总结来说,Yule-Walker方程是LPCs计算的一个重要基础,它在MATLAB中得到了有效的实现。通过优化和与其他算法的结合,Yule-Walker方程可以更好地适应不同的信号处理需求。

4. 自相关序列的初始化

在本章节中,我们将深入探讨自相关序列的概念、计算方法以及它们在LPCs计算中的应用。自相关序列是线性预测编码(LPC)分析中的一个重要组成部分,它提供了信号在不同时间延迟下的相关性信息。这些信息对于预测未来信号值至关重要,特别是在语音信号处理中。

4.1 自相关序列的概念和计算

4.1.1 自相关序列的定义

自相关序列是信号分析中的一个基本概念,它衡量的是信号与其自身在不同时间延迟下的相似度。对于离散时间信号x[n],其自相关序列定义为:

[ R[k] = \sum_{n=-\infty}^{\infty} x[n] \cdot x[n+k] ]

其中,R[k]表示延迟为k的自相关值,x[n]是信号样本值,k是延迟量。当k=0时,自相关序列等于信号能量。

4.1.2 自相关序列的计算方法

自相关序列的计算通常涉及到对信号的滑动窗口进行相关性分析。在实际应用中,由于信号长度有限,我们通常使用有限长的信号段进行计算。以下是计算自相关序列的一个简单步骤:

  1. 选择一个合适的窗口长度N。
  2. 对于每个延迟值k(通常从0到N-1),计算自相关值R[k]。
  3. 将计算结果存储在数组中。

4.1.3 自相关序列的物理意义

自相关序列反映了信号的周期性特征。如果一个信号是周期性的,那么它的自相关序列将在非零延迟处出现峰值。这些峰值对应的延迟值揭示了信号的周期特性。

4.2 自相关序列在LPCs计算中的应用

4.2.1 初始化自相关序列

在Levinson-Durbin算法中,自相关序列的初始化是计算LPCs的第一步。我们需要计算信号的自相关序列,并将其用于后续的预测误差最小化过程。初始化自相关序列涉及以下步骤:

  1. 确定窗口长度N,通常选择一个小于信号长度的值。
  2. 计算信号的自相关序列R[k]。
  3. 将自相关序列存储在一个数组中,以便后续使用。

4.2.2 自相关序列对LPCs计算的影响

自相关序列的质量直接影响到LPCs的计算精度。如果自相关序列计算不准确,那么得到的LPCs可能无法很好地表示信号的特性。因此,确保自相关序列的准确性是至关重要的。在实际应用中,我们可能需要对自相关序列进行窗函数处理以减少边界效应,或者使用更高级的方法来提高序列的准确性。

4.2.3 自相关序列的计算示例

以下是一个使用MATLAB计算自相关序列的示例代码:

% 假设x是包含信号样本的向量
N = 100; % 窗口长度
x = randn(N, 1); % 随机生成一个信号样本
[R, lags] = xcorr(x, 'biased'); % 计算自相关序列

% 绘制自相关序列图
figure;
stem(lags, R);
title('自相关序列');
xlabel('延迟');
ylabel('自相关值');

在这个示例中,我们使用MATLAB内置函数 xcorr 来计算自相关序列,并使用 stem 函数绘制自相关序列图。自相关序列图可以直观地显示信号的周期性特征。

4.2.4 自相关序列的物理意义分析

自相关序列的物理意义可以通过其峰值来理解。在自相关序列图中,横轴代表延迟,纵轴代表自相关值。当自相关值在某个延迟处出现峰值时,这表明信号在该延迟处具有较高的相似度。这些峰值揭示了信号的潜在周期性,对于信号分析和处理具有重要意义。

例如,如果一个信号是由周期性脉冲组成的,其自相关序列将在等于脉冲周期的延迟处出现峰值。这样的信息对于信号处理任务,如周期性检测、信号重建和滤波等,都是非常有用的。

4.2.5 自相关序列的计算限制

在计算自相关序列时,需要考虑信号的长度和边界效应。信号长度较短时,计算的自相关序列可能无法准确反映信号的特性。此外,由于信号通常有限长,边界处的自相关值会受到信号长度的限制,可能无法正确反映信号的周期性。

为了解决这些问题,可以使用窗函数来减少边界效应。例如,使用汉明窗或汉宁窗对信号进行加权处理,可以在一定程度上减少边界效应的影响,提高自相关序列的准确性。

4.2.6 自相关序列的应用场景

自相关序列在数字信号处理中有广泛的应用场景,特别是在语音信号处理中。例如,在语音编码和识别中,自相关序列可以用于估计声道的特性,从而提取重要的语音特征。此外,在噪声抑制和回声消除中,自相关序列也发挥着重要作用,因为它可以帮助我们理解信号的周期性和噪声成分。

4.2.7 自相关序列的MATLAB实现

为了进一步理解自相关序列的计算和应用,我们可以使用MATLAB编写一个简单的脚本来计算和绘制自相关序列。以下是一个示例代码:

% 假设x是包含信号样本的向量
N = 100; % 窗口长度
x = randn(N, 1); % 随机生成一个信号样本

% 计算自相关序列
[R, lags] = xcorr(x, 'biased');

% 绘制自相关序列图
figure;
stem(lags, R);
title('自相关序列');
xlabel('延迟');
ylabel('自相关值');

在这个示例中,我们使用MATLAB内置函数 xcorr 来计算自相关序列,并使用 stem 函数绘制自相关序列图。自相关序列图可以直观地显示信号的周期性特征。

4.2.8 自相关序列的计算分析

在计算自相关序列时,需要考虑信号的长度和边界效应。信号长度较短时,计算的自相关序列可能无法准确反映信号的特性。此外,由于信号通常有限长,边界处的自相关值会受到信号长度的限制,可能无法正确反映信号的周期性。

为了解决这些问题,可以使用窗函数来减少边界效应。例如,使用汉明窗或汉宁窗对信号进行加权处理,可以在一定程度上减少边界效应的影响,提高自相关序列的准确性。

4.2.9 自相关序列的优化方法

为了提高自相关序列的计算精度,可以采用一些优化方法。例如,可以通过增加信号长度来减少边界效应的影响。此外,还可以使用更复杂的窗函数来改善自相关序列的特性。

在实际应用中,我们需要根据信号的特点和处理任务的需求来选择合适的优化方法。例如,在语音信号处理中,可以使用特定的窗函数来优化语音的自相关特性,从而提高语音编码的质量。

4.2.10 自相关序列的应用优化

在应用自相关序列时,可以考虑结合其他信号处理方法来提高处理效果。例如,在语音信号处理中,可以结合自动增益控制(AGC)或噪声抑制等技术来优化自相关序列的计算。

通过这种方法,可以进一步提高自相关序列在语音编码和识别中的应用效果。此外,还可以通过使用机器学习等技术来进一步优化自相关序列的应用,从而提高信号处理的性能。

4.2.11 自相关序列的查询和解析

为了更好地理解自相关序列的特性,可以使用一些工具和方法进行查询和解析。例如,可以使用MATLAB的 xcorr 函数来计算自相关序列,并使用 fft 函数来分析其频域特性。

通过这种方法,可以更深入地了解信号的周期性和频率特性。此外,还可以使用自相关序列的解析结果来进行信号预测和滤波等应用。

4.2.12 自相关序列的流程图表示

为了更直观地展示自相关序列的计算过程,可以使用流程图来表示。以下是一个简单的流程图表示:

graph LR
A[开始] --> B[选择窗口长度N]
B --> C[计算信号的自相关序列R[k]]
C --> D[存储自相关序列]
D --> E[结束]

在这个流程图中,我们展示了计算自相关序列的基本步骤。从选择窗口长度开始,到计算和存储自相关序列结束。

请注意,由于本章节中包含了大量的段落和代码块,可能无法一次性完整展示所有内容。在实际编写文章时,您需要根据段落的逻辑顺序和内容深度,适当地分割和组织这些段落。

5. Levinson Durbin递归步骤

5.1 递归算法的基本原理

5.1.1 递归算法的概念

递归算法是一种在解决问题时自我调用的编程技术,它通过将问题分解为更小的、更易于管理的子问题来解决问题。在Levinson Durbin算法中,递归被用来高效地计算线性预测系数(LPCs)。递归算法的核心在于它将问题分解到基本情况下,然后逐步返回解决整个问题的过程。

5.1.2 递归在LPCs计算中的应用

在计算LPCs时,Levinson Durbin算法利用递归的方式,将求解过程简化为一系列迭代步骤。每一步迭代都基于前一步的结果,直到达到递归的基本情况。这种方法不仅减少了计算量,也使得算法更容易理解和实现。

5.2 Levinson Durbin递归过程详解

5.2.1 初始化和前向递归步骤

Levinson Durbin算法的初始化包括计算自相关序列和设置初始预测器。前向递归步骤从最高阶的预测器开始,逐步向前计算每一个预测器的系数。这个过程是一个逐步优化的过程,每一步都利用前一步的结果来提高当前步的预测精度。

递归初始化

在MATLAB中,我们可以初始化自相关序列和预测器系数如下:

% 假设r是一个自相关序列的数组
r = [1.0, 0.8, 0.3]; % 示例自相关序列
phi = zeros(1, length(r)); % 初始化预测器系数
代码逻辑解读
  • r 是一个数组,包含了自相关的值。
  • phi 是一个与 r 等长的数组,用于存储每一步的预测器系数,初始时都设为0。

5.2.2 反向递归步骤和最终LPCs的计算

反向递归步骤是从最低阶的预测器开始,逐步向上计算每个预测器的系数。在这个过程中,每一步都会根据前一步的结果和当前步的残差来更新预测器系数。最终,当递归回到最高阶时,我们得到了完整的LPCs。

递归实现
% 反向递归计算
for i = length(r):-1:2
    k = phi(i+1);
    for j = 1:i-1
        phi(j) = phi(j) + k * phi(i-j);
    end
    % 更新残差
    k = -k / (1 - k^2);
    phi(i) = k;
end
代码逻辑解读
  • k 表示当前步的反射系数。
  • phi(j) 是根据前一步的预测器系数和当前步的反射系数来更新的。
  • 残差 k 被用来更新反射系数,用于下一阶预测器系数的计算。
参数说明
  • i :当前递归的阶数。
  • j :在反向递归中用于迭代的索引。
  • k :反射系数,用于更新预测器系数和残差。

在本章节中,我们详细介绍了Levinson Durbin算法的递归步骤,包括初始化和前向递归步骤,以及反向递归步骤和最终LPCs的计算。通过MATLAB代码示例,我们展示了如何在实际中实现这些步骤,并对每一步的参数和逻辑进行了详细的解读和说明。这种递归方法不仅简化了计算过程,而且提高了算法的效率,使得线性预测系数的计算变得快速而准确。

6. 预测系数的更新和残差计算

在Levinson-Durbin算法中,预测系数的更新和残差的计算是两个关键步骤,它们共同确保了算法能够有效地逼近原始信号的线性预测模型。本章节将详细探讨这两个步骤的理论基础和实际操作过程。

6.1 预测系数的更新过程

6.1.1 更新预测系数的步骤

预测系数的更新是通过递归地调整每个阶数的预测系数来实现的。在Levinson-Durbin算法中,我们从一阶预测系数开始,逐步增加预测阶数,同时更新预测系数以最小化残差能量。以下是更新预测系数的步骤:

  1. 初始化 :首先,将一阶预测系数设置为自相关序列的第一个值。
  2. 前向递归 :对于每个阶数k,计算预测误差ek,并更新预测系数。
  3. 反向递归 :利用计算出的预测误差ek,更新更高阶数的预测系数。

6.1.2 更新预测系数的数学公式

预测系数的更新公式可以表示为:

αk(i) = αk-1(i) + αk*(k) * αk-1(k-i)

其中,αk(i)是第k阶的第i个预测系数,αk*(k)是第k阶预测误差的共轭,αk-1(k-i)是第k-1阶的第k-i个预测系数。

6.2 残差的计算和分析

6.2.1 残差的定义和重要性

残差是指在使用线性预测模型进行信号预测时,未能被模型预测到的那部分信号。它是原始信号与预测信号之间的差值,表示了模型的预测误差。在Levinson-Durbin算法中,残差的计算对于评估预测模型的性能和进一步更新预测系数至关重要。

6.2.2 残差在LPCs计算中的应用

在LPCs计算中,残差的计算通常涉及到以下步骤:

  1. 计算预测误差 :对于每个阶数k,计算预测误差ek,该误差是原始信号和预测信号之间的差值。
  2. 更新残差信号 :使用更新的预测系数,计算下一个阶数的残差信号。

残差ek可以通过以下公式计算:

ek = ak - ∑(i=1,k-1) αk(i) * ak-k+i

其中,ak是当前阶数的自相关序列值,αk(i)是第k阶的第i个预测系数,ak-k+i是自相关序列的逆序值。

残差信号的分析可以帮助我们理解模型的预测性能,并为进一步的模型优化提供依据。

6.2.3 残差计算的MATLAB示例

以下是一个简单的MATLAB代码示例,用于演示如何计算残差:

% 假设r是一个包含自相关序列的向量
% k是当前的阶数
% alpha是一个包含当前阶数预测系数的向量
% e是一个包含预测误差的向量

e = zeros(1, k);
for i = 1:k
    e(i) = r(i) - sum(alpha(1:i-1) .* conj(alpha(i:k)));
end

在实际应用中,我们需要根据Levinson-Durbin算法的递归过程逐步计算每一阶的残差。

6.2.4 残差在LPCs计算中的应用

残差不仅用于评估预测模型的性能,还可以用于信号重建。在语音编码等应用中,残差信号可以与预测系数一起传输,以实现更高质量的信号重建。此外,残差的统计特性也可以用于进一步分析和优化预测模型。

通过上述内容,我们可以看到预测系数的更新和残差的计算是Levinson-Durbin算法中两个相互依存的关键步骤。下一章我们将探讨如何在MATLAB中实现这些步骤,并分析Levinson-Durbin算法在数字信号处理中的实际应用。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:Levinson Durbin算法在数字信号处理和通信领域广泛用于求解线性预测系数,它通过递归过程避免了直接求解Yule-Walker方程的复杂性。该算法利用自相关序列来估计LPC系数,具有计算效率高和数值稳定性好的优点。算法实现包括初始化、递归步骤和更新残差,适用于语音编码、音频压缩和信号分析等领域。MATLAB环境下,利用其强大的向量化和矩阵运算能力,可以简洁地实现此算法,促进信号建模和处理,特别是在资源受限的嵌入式系统中。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值