122.买卖股票的最佳时机ll

该篇文章介绍了一个Python函数,用于计算给定整数股票价格数组中通过买卖操作所能获得的最大利润。函数利用动态规划思想,遍历价格数组一次,找出每个价位的利润并累加。时间复杂度为O(N),空间复杂度为O(1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天出售。返回你能获得的最大利润 

示例 1:输入:prices = [7,1,5,3,6,4] 输出:7 解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。总利润为 4 + 3 = 7

示例 2:输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。总利润为 4 。

示例 3:输入:prices = [7,6,4,3,1] 输出:0  解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。

def maxprofit(self,prices:List[int])->int
    profit=0
    for i in range(1,len(prices)):
        temp=prices[i]-prices[i-1]
        if temp>0:
            profit+=temp
     return profit

复杂度分析

  • 时间复杂度 O(N) : 只需遍历一次 price 。
  • 空间复杂度 O(1) : 变量使用常数额外空间
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值