55.跳跃游戏

文章讨论了一个编程问题,给定一个非负整数数组,判断能否通过跳跃达到数组的最后一个元素。通过迭代更新每个位置的最大可达位置,利用动态规划方法解决。示例代码展示了如何实现这一过程。
摘要由CSDN通过智能技术生成

题目:给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。

示例 1:输入:nums = [2,3,1,1,4] 输出:true 解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:输入:nums = [3,2,1,0,4] 输出:false 解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

def canjump(self,nums:List[int])->bool:
    if len(nums)==0:
        return False
    elif len(nums)==1:
        return True
    elif nums[0]>len(nums):
        return True
    for i in range(1,len(nums)):
        if nums[i-1]<i:
            nums[i]=0:
        else:
            nums[i]=max(i+nums[i],nums[i-1])
   return nums[-2]>=len(nums)-1
            

代码以nums=[2,3,1,1,4]为例

1 i=1时,nums[i-1]=2,即nums[i-1]>=(i=1),则nums[1]=4.

2 i=2时,nums[i-1]=4,即nums[i-1]>=(i=2),则nums[2]=4.

3 i=3时,nums[i-1]=4,即nums[i-1]>=(i=3),则nums[3]=4.

4 i=4时,nums[i-1]=4,即nums[i-1]>=(i=4,)则nums[4]=8.

5 循环结束后更新后的nums=[2,4,4,4,8]

6 nums[-2]=4,len(nums)-1=4,即nums[-2]>=len(nums)-1返回true。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值