matlab lu分解就方程,LU分解(Doolittle分解)解线性方程组(Matlab版)

%LU分解,Doolittle分解%L为单位下三角阵,U为上三角阵clear;clc;A=[3 -5 6 4 -2 -3 8; 1 1 -9 15 1 -9 2; 2 -1 7 5 -1 6 11; -1 1 3 2 7 -

%LU分解,Doolittle分解

%L为单位下三角阵,U为上三角阵

clear;clc;

A=[3 -5 6 4 -2 -3 8;

1 1 -9 15 1 -9 2;

2 -1 7 5 -1 6 11;

-1 1 3 2 7 -1 -2;

4 3 1 -7 2 1 1;

2 9 -8 11 -1 -4 -1;

7 2 -1 2 7 -1 9];%系数矩阵

b=[11 2 29 9 5 8 25]';%n维向量

% A=[4,-2,0,4;-2,2,-3,1;0,-3,13,-7;4,1,-7,23];

% b=[1 2 3 4];

n=length(b);%方程个数n

x=zeros(n,1);%未知向量

A(2:n,1)=A(2:n,1)./A(1,1);

for i=2:n-1

A(i,i)=A(i,i)-sum(A(i,1:i-1)'.*A(1:i-1,i));

for j=i+1:n

A(i,j)=A(i,j)-sum(A(i,1:i-1)'.*A(1:i-1,j));

A(j,i)=(A(j,i)-sum(A(j,1:i-1)'.*A(1:i-1,i)))/A(i,i);

end

end

A(n,n)=A(n,n)-sum(A(n,1:n-1)'.*A(1:n-1,n));

A

U=A;L=A;

for i=1:n

L(i,i)=1;

end

for i=1:n-1

for j=i+1:n

L(i,j)=0;

end

end

L %下三角阵

for i=2:n

for j=1:i-1

U(i,j)=0;

end

end

U %上三角阵

%-----用LU分解解线性方程组------

y=zeros(n,1);

y(1)=b(1);

for i=2:n

y(i)=b(i)-sum(L(i,1:i-1)'.*y(1:i-1));

end

y

x(n)=y(n)/U(n,n);

for i=n-1:-1:1

x(i)=(y(i)-sum(U(i,i+1:n)'.*x(i+1)))/U(i,i);

end

x

%可不必先将A分解后再求解Ly=b,计算y与A的分解可同时进行

%对增广矩阵A=[A,b]进行LU分解,分解后第n+1列位置上的元即是y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值