选主元doolittle分解法求解n元线性方程组 MATLAB实现

本文介绍了使用MATLAB实现选主元的Doolittle分解法来求解n元线性方程组的详细过程,包括算法参考、错误检查和具体步骤。通过示例矩阵A和向量b,展示了如何得到LU分解矩阵和解向量x。
摘要由CSDN通过智能技术生成
算法参考数值分析第四版 颜庆津 P23 (选主元的doolittle分解法算法)
运行结果截图:输入矩阵A,b。输出QA=LU的分解矩阵和Ax=b的解。
A=[1 8 2 3;-6 -3 8 1;2 4 4 2;10 5 -5 6]
b=[12;40;-50;80]

doolittle.m文件函数内容:
function [L,U,x] = doolittle(A,b)%用选主元的doolittle分解法求解线性方程组
    z=size(A);
    n=z(1);%b(1),b(2)分别是A的行和列.这里只处理n*n的非奇异矩阵
    %错误检查
     if z(1)~=z(2)%非方阵错误
        error('MATLAB:Crout:Input Matrix should be a Square matrix.  See Crout.');
    end
    if n~=rank(A)%非满秩矩阵错误
        error('MATLAB:Crout:Input Matrix should be FULL RANK.  See Crout.');
    end    
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值