【联邦学习论文阅读】常用算法理解(SCAFFOLD、FedPD、FedBN)-目前仅SCAFFOLD

SCAFFOLD算法解决了FedAvg在非IID数据下的client-drift问题,通过控制变量修正本地更新,实现更快收敛。FedBN针对特征分布变化(featureshift)的情况,利用本地批量归一化层保持模型性能,同时保护数据隐私。实验表明,SCAFFOLD在多种设置下优于SGD和FedAvg,FedBN在特征分布异构场景下表现出色。

SCAFFOLD(ICML-2020):SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
FedPD:https://arxiv.org/abs/2005.11418
FedBN(ICLR 2021):FEDBN: FEDERATED LEARNING ON NON-IID FEATURES VIA LOCAL BATCH NORMALIZATION

杂七杂八

1…梯度实际上是对用户数据进行函数变换,在训练数据时携带信息,可能有泄露梯度隐私的风险。

  • least squares regression(最小二乘回归): m i n w ∑ i = 1 n l ( w , x i , y i ) ,   where   l ( w , x i , y i ) = 1 2 ( x i T w − y i ) 2 \underset{w}{min}\sum_{i=1}^{n}l(w,x_i,y_i),\ \texttt{where} \ l(w,x_i,y_i)=\frac{1}{2}(x_i^Tw-y_i)^2 wmini=1nl(w,xi,yi), where l(w,xi,yi)=21(xiTwyi)2

  • stochastic gradient(随机梯度): g i = ∂   l ( w , x i , y i ) ∂ w = ( x i T w − y i ) x i g_i=\frac{\partial \ l(w,x_i,y_i)}{\partial w}=(x_i^Tw-y_i)x_i gi=w l
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值