SCAFFOLD(ICML-2020):SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
FedPD:https://arxiv.org/abs/2005.11418
FedBN(ICLR 2021):FEDBN: FEDERATED LEARNING ON NON-IID FEATURES VIA LOCAL BATCH NORMALIZATION
杂七杂八
1…梯度实际上是对用户数据进行函数变换,在训练数据时携带信息,可能有泄露梯度隐私的风险。
- least squares regression(最小二乘回归): m i n w ∑ i = 1 n l ( w , x i , y i ) , where l ( w , x i , y i ) = 1 2 ( x i T w − y i ) 2 \underset{w}{min}\sum_{i=1}^{n}l(w,x_i,y_i),\ \texttt{where} \ l(w,x_i,y_i)=\frac{1}{2}(x_i^Tw-y_i)^2 wmin∑i=1nl(w,xi,yi), where l(w,xi,yi)=21(xiTw−yi)2
- stochastic gradient(随机梯度): g i = ∂ l ( w , x i , y i ) ∂ w = ( x i T w − y i ) x i g_i=\frac{\partial \ l(w,x_i,y_i)}{\partial w}=(x_i^Tw-y_i)x_i gi=∂w∂ l

SCAFFOLD算法解决了FedAvg在非IID数据下的client-drift问题,通过控制变量修正本地更新,实现更快收敛。FedBN针对特征分布变化(featureshift)的情况,利用本地批量归一化层保持模型性能,同时保护数据隐私。实验表明,SCAFFOLD在多种设置下优于SGD和FedAvg,FedBN在特征分布异构场景下表现出色。
最低0.47元/天 解锁文章
5702

被折叠的 条评论
为什么被折叠?



