给定n(n<=100)种物品和一个背包。物品i的重量是wi(wi<=100),价值为vi(vi<=100),背包的容量为C(C<=1000)。 应如何选择装入背包中的物品,使得装入背包中物品的总价值最...

这个问题可以使用0-1背包的解决方法。0-1背包是一个经典的动态规划问题,可以通过对背包容量和每个物品的重量进行递推,得到最大价值。

举个例子:

假设有三个物品,分别为A、B、C,重量分别为3、4、5,价值分别为4、5、6,背包容量为7。

我们可以用一个数组f[i][j]表示前i个物品恰好放入一个容量为j的背包中所得到的最大价值。

则初始数组为f[0][0…7]={0,0,0,0,0,0,0,0}

当考虑第1个物品A时:

①不选A:f[1][0…7]={0,0,0,0,0,0,0,0};

②选A:f[1][0…7]={0,0,0,4,4,4,4,4};

因此f[1][0…7]=

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 题目描述:给定n(n<=100)物品一个背包物品i的重量wi(wi<=100),价值vi(vi<=100),背包容量为c(c<=1000)。选择装入背包物品,要求装入物品不能超过背包容量,使得装入物品总价值最大。 解题思路:01背包问题,使用动态规划算法。先定义一个二维数组dp,其dp[i][j]表示前i个物品放入容量为j的背包能获得的最大价值。则状态转移方程如下: dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi) 其,dp[i-1][j]表示不放i物品的最大价值,dp[i-1][j-wi] + vi表示放i物品的最大价值。 最终结果为dp[n][c],即前n个物品放入容量为c的背包的最大价值。 代码实现: n, c = map(int, input().split()) w = [0] * (n+1) # 重量 v = [0] * (n+1) # 价值 for i in range(1, n+1): wi, vi = map(int, input().split()) w[i], v[i] = wi, vi dp = [[0] * (c+1) for _ in range(n+1)] # 初始化dp数组 for i in range(1, n+1): for j in range(1, c+1): if j < w[i]: # 背包容量小于物品重量,无法放入 dp[i][j] = dp[i-1][j] else: # 可以选择放或不放,取最大价值 dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]) print(dp[n][c]) ### 回答2: 对于背包问题,本质上就是要通过贪心或动态规划的方法,选择尽可能多的物品放到背包,来达到最大价值。 一、贪心算法 贪心算法是一基于贪心选择性质的策略,即在每一步选择都采取当前状态下最优的选择,从而希望最后获得的全局最优解。 对于背包问题,我们可以按照单位重量价值vi/wi)从大到小排序,然后依次将价值较高的物品放入背包。具体步骤如下: 1. 根据单位重量价值物品从大到小排序; 2. 依次将排好序的物品放入背包,如果放不下则只取能放下的部分; 3. 直到背包装满或没有要放的物品为止。 这贪心策略可以得到较优解,但并不能保证一定是最优解。 二、动态规划 动态规划是一基于递推的算法,通常适用于有重叠子问题和具有最优子结构性质的问题。 对于背包问题,我们可以定义一个二维数组dp[i][j]表示前i个物品背包容量为j时的最大价值,则在状态转移时,分两情况: 1. 不选第i件物品,则dp[i][j] = dp[i-1][j]; 2. 选第i件物品,则dp[i][j] = dp[i-1][j-w[i]] + v[i]; 综合这两情况,状态转移公式为: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]) 其,max表示取最大值。 最终,当所有物品都被处理完毕时,dp[n][c]就是问题的解,即背包容量为c时能够装下的最大价值。 综上所述,从一开始的选择物品,到最后得到最优解的过程,贪心算法和动态规划两算法各有优缺点,需要根据实际问题的特点进行选择和优化。 ### 回答3: 本题是一个经典的动态规划问题,需要通过寻找最优子结构和无后效性来确定状态转移方程。 首先定义一个二维数组dp[i][j],表示前i个物品放进容量为j的背包所能取得的最大价值。 对于一个物品i,存在两情况: (1)不放入背包,此时总价值为dp[i-1][j]; (2)放入背包,此时总价值为dp[i-1][j-wi]+vi,其dp[i-1][j-wi]表示容量为j-wi背包所能取得的最大价值,加上当前物品价值vi。 综合上述两情况,对dp[i][j]进行转移,有: 当j<wi时,dp[i][j]=dp[i-1][j]; 当j>=wi时,dp[i][j]=max(dp[i-1][j], dp[i-1][j-wi]+vi); 最终,dp[n][c]即为所求,即前n个物品能够放进容量为c的背包所能取得的最大价值。 需要注意的是,由于dp状态转移方程所涉及的变量均小于等于1000,因此可以用滚动数组来进行优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值