动态规划——背包问题(离散0-1、0-N)

动态规划——背包问题(离散0-1、0-N)

0-1

问题:

给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为c。应如何选择装入背包中的物品,使得装入背包中物品的

总价值最大。

在选择装入背包的物品时,对每种物品i只有两个选择,装入背包或不装入背包,也不能将物品装入背包多次(0-1)。

分析:

子结构:m(i,j):序号为i,i+1,…n的若干待装物品,背包容量为j,最大价值。

递推结构:第i个物品,若装得下,有两种选择,选或者不选;若装不下,那就直接不选。

m(i,j) = m(i+1,j),j<wi;m(i,j) = max{m(i+1,j-wi)+vi,m(i+1,j)},j>=wi

初始化第n+1行、第一列为0

代码:

#include <bits/stdc++.h>

using namespace std;

#define MAXC 105

// 0-1背包问题
// 输入:物品数量n,背包容量c,物品重量w[],物品价值v[],i到n的物品的容量为c最大价值矩阵m[i][c],结果记录矩阵a[][]
void knapsack(int n,int c,int w[],int v[],int m[][MAXC],int a[][MAXC]){
    // 初始化
    for(int i = 0;i <= n;i++)
        m[i][0] = 0;
    for(int i = 0;i <= c;i++)
        m[n+1][i] = 0;
    // 计算
    for(int i = n;i >= 1;i--){
        for(int j = 1;j <= c;j++){
            if(j < w[i]){
                m[i][j] = m[i+1][j];
                a[i][j] = 0;
            }else{
                m[i][j] = max(m[i+1][j-w[i]]+v[i], m[i+1][j]);
                if(m[i+1][j-w[i]]+v[i] > m[i+1][j]){
                    a[i][j] = 1;
                }else{
                    a[i][j] = 0;
                }
            }
        }
    }
}

// 根据结果记录矩阵a构造最优解
void traceback(int a[][MAXC],int i,int j,int n,int w[]){
    if(i==n+1 || j==0) return;
    if(a[i][j]==0)
        traceback(a, i+1, j, n, w);
    else{
        cout<<i<<" ";
        traceback(a, i+1, j-w[i], n, w);
    }
}

int main(){
    int n = 5,c = 10;
    int w[6] = {0,2,2,6,5,4};
    int v[6] = {0,6,3,5,4,6};
    int m[n+2][MAXC],a[n+2][MAXC];
    memset(m, 0, sizeof(m));
    memset(a, 0, sizeof(a));
    knapsack(n, c, w, v, m, a);
    
    cout<<m[1][c]<<endl;
    
    traceback(a, 1, c, n, w);
}

复杂度:

时间复杂度:O(nc)

空间复杂度:O(nc)

思考与改进:

空间利用率不高,矩阵的列有许多是无用的;时间复杂度较高,背包容量很大很大的时候,算法会非常大;只支持整数。

改进措施:改邻接矩阵为邻接表,支持连续变量,具体算法比较复杂,后面再研究。

0-N

问题:

在0-1背包的基础上,所有物品都可以被选择多次。

分析:

唯一的改变:选了之后下次还可以选。

m(i,j) = m(i+1,j),j<wi;m(i,j) = max{m(i,j-wi)+vi,m(i+1,j)},j>=wi

代码:

#include <bits/stdc++.h>

using namespace std;

#define MAXC 105

// 0-1背包问题
// 输入:物品数量n,背包容量c,物品重量w[],物品价值v[],i到n的物品的容量为c最大价值矩阵m[i][c],结果记录矩阵a[][]
void knapsack(int n,int c,int w[],int v[],int m[][MAXC],int a[][MAXC]){
    // 初始化
    for(int i = 0;i <= n;i++)
        m[i][0] = 0;
    for(int i = 0;i <= c;i++)
        m[n+1][i] = 0;
    // 计算
    for(int i = n;i >= 1;i--){
        for(int j = 1;j <= c;j++){
            if(j < w[i]){
                m[i][j] = m[i+1][j];
            }else{
                m[i][j] = max(m[i][j-w[i]]+v[i], m[i+1][j]);
                if(m[i][j-w[i]]+v[i] > m[i+1][j]){
                    a[i][j] = 1;
                }
            }
        }
    }
}

// 根据结果记录矩阵a构造最优解
void traceback(int a[][MAXC],int i,int j,int n,int w[]){
    if(i==n+1 || j==0) return;
    if(a[i][j]==0)
        traceback(a, i+1, j, n, w);
    else{
        cout<<i<<" ";
        traceback(a, i, j-w[i], n, w);
    }
}

int main(){
    int n = 5,c = 10;
    int w[6] = {0,2,2,6,5,4};
    int v[6] = {0,6,3,5,4,6};
    int m[n+2][MAXC],a[n+2][MAXC];
    memset(m, 0, sizeof(m));
    memset(a, 0, sizeof(a));
    knapsack(n, c, w, v, m, a);
    
    cout<<m[1][c]<<endl;
    
    traceback(a, 1, c, n, w);
}

复杂度:

时间复杂度:O(nc)

空间复杂度:O(nc)

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值