MNIST数据集在tensorflow中实现CNN的实例代码参数学习

为了学习CNN神经网络,从官网上把示例代码抄了下来,先从读懂开始。

源代码

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
import matplotlib.pyplot as plt
import numpy as np
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)
#定义一个函数,用于构建卷积层
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#定义一个函数,用于构建池化层
def max_pool(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
mnist=input_data.read_data_sets("F:\py_practice\py_jupyter\MNIST_data/",
                                one_hot=True)

x = tf.placeholder(tf.float32, [None, 784])
y_actual = tf.placeholder(tf.float32, shape=[None, 10])

x_image=tf.reshape(x,[-1,28,28,1])    #数据的占位符
w_conv1=weight_variable([5,5,1,32])    #标签的占位符
b_conv1=bias_variable([32])
h_conv1=tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1)#第一个卷积层
h_pool1=max_pool(h_conv1)


W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)      #第二个卷积层
h_pool2 = max_pool(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])              #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)   #softmax层

cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict))     #交叉熵
train_step = tf.train.AdamOptimizer(1e-3).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#sess=tf.Session()


with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    for i in range(20000):
      batch = mnist.train.next_batch(100)
      if i%500 == 0:                  #训练500次,验证一次
        train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
        print( 'step %d, training accuracy %g'%(i,train_acc))
        train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.7})

    test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
    sess.close()
print ("test accuracy %g"%test_acc)

说明一下,我的电脑上相对路径有一点问题,所以使用的绝对路径。相对路径应该鲁棒性强一点。

首先是定义一些函数

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)
#定义一个函数,用于构建卷积层
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#定义一个函数,用于构建池化层
def max_pool(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
mnist=input_data.read_data_sets("F:\py_practice\py_jupyter\MNIST_data/",
                                one_hot=True)

一些具体的参数

  • tf.truncated_normal中的stddev是正态分布的标准差。
  • tf.nn.conv2d中的strides,可以理解为卷积核移动的步长
  • tf.nn.conv2d中的padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式
  • pooling有两种,一种是最大值池化,一种是平均值池化,我采用的是最大值池化tf.max_pool()。池化的核函数大小为2*2,因此ksize=[1,2,2,1],步长为2,因此strides=[1,2,2,1]。

数据的输入

x = tf.placeholder(tf.float32, [None, 784])
y_actual = tf.placeholder(tf.float32, shape=[None, 10])
x_image=tf.reshape(x,[-1,28,28,1])

使用placeholder占位符,定义数据类型和数据格式。reshape是将输入数据转换成指定格式,-1的意思是暂定不管。

第一层的建立

w_conv1=weight_variable([5,5,1,32])    #标签的占位符
b_conv1=bias_variable([32])
h_conv1=tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1)#第一个卷积层
h_pool1=max_pool(h_conv1)
  • [5,5,1,32]的意思是卷积核大小为5×5,单通道,输出的通道为32.
  • 因为输出是32通道,所以偏置量的size也是32
  • max_pool是最大值的池化准则。

第一层的用处就是将输入的单通道图片输出为32个不同特征的图片

第二个卷积层

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)      #第二个卷积层
h_pool2 = max_pool(h_conv2)

同样,先是进行卷积,然后进行激活函数,最后池化一下。

输入为32通道,输出64通道。

全连接层

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])              #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

这个层是输出一个1×1×X的张量。从其它人的博客学了一下全连接的意义,总结一下。

  • 卷积取的是局部特征,全连接就是把以前的局部特征重新通过权值矩阵组装成完整的图。

  • 因为用到了所有的局部特征,所以叫全连接。

  • 全连接层之前的作用是提取特征,全连接层的作用是分类

全连接层的理论学习效率非常高,可以解决复杂的模型,但同时缺点就是,容易造成过拟合,以及运算速度降低等问题。

softmax层

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)   #softmax层

softmax 可以理解为归一化,如目前图片分类有一百种,那经过 softmax 层的输出就是一个一百维的向量。向量中的第一个值就是当前图片属于第一类的概率值,向量中的第二个值就是当前图片属于第二类的概率值…这一百维的向量之和为1.

这些层中的参数选取很重要,学习率,dropout,标准差等关键参数更是十分敏感,稍有变更就可能导致结果不收敛,大家可以在经验参数的基础上进行小规模的改动,达到最好效果。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值