SVC与linearSVC的区别

SVC (Support Vector Classification) 是支持向量机分类模型,它是建立在 SVM (Support Vector Machine) 的基础之上的。SVM 的主要目的是在一组样本数据中找到最佳的决策边界(也就是一个超平面),使得超平面两侧的样本尽可能地分开。而 SVC 则是在 SVM 的基础上加上了分类的目的,所以可以用来做分类任务。

LinearSVC 是一种线性支持向量机分类器,也是建立在 SVM 的基础之上的。它与 SVC 的区别在于 LinearSVC 是线性的,所以它只能处理线性可分的数据。相比之下,SVC 可以处理非线性可分的数据,因为它可以使用核函

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值