SVC (Support Vector Classification) 是支持向量机分类模型,它是建立在 SVM (Support Vector Machine) 的基础之上的。SVM 的主要目的是在一组样本数据中找到最佳的决策边界(也就是一个超平面),使得超平面两侧的样本尽可能地分开。而 SVC 则是在 SVM 的基础上加上了分类的目的,所以可以用来做分类任务。
LinearSVC 是一种线性支持向量机分类器,也是建立在 SVM 的基础之上的。它与 SVC 的区别在于 LinearSVC 是线性的,所以它只能处理线性可分的数据。相比之下,SVC 可以处理非线性可分的数据,因为它可以使用核函