基于卷积神经网络的文本分析有一些缺点:
语义理解能力有限:卷积神经网络只能基于单词或词组的出现频率进行分析,无法理解语义。例如,如果一篇文章中有“美国”和“山谷”这两个词出现的频率很高,但这并不能说明这篇文章一定是关于美国山谷的。
对于多义词的处理困难:卷积神经网络无法理解词语的多义性,会将多义词的不同含义都看作是独立的单词,会导致分析的结果不准确。
对于新词的处理困难:卷积神经网络在训练过程中是无法学习新词的,对于新词的处理能力较差。
对于语言结构的理解能力有限:卷积神经网络无法理解句子的结构和语法规则,只能基于单词出现的顺序进行分析。
计算复杂度较高