大规模数据的相似度计算:LSH算法

LSH的思想:
LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后的它们也具有很高的相似度
用途:
主要用于大数据规模时,计算两两之间的相似度
为什么要用LSH:
我们经常会遇到的一个问题就是面临着海量的高维数据,查找最近邻。如果使用线性查找,那么对于低维数据效率尚可,而对于高维数据,就显得非常耗时了。为了解决这样的问题,人们设计了一种特殊的hash函数,使得2个相似度很高的数据以较高的概率映射成同一个hash值,而令2个相似度很低的数据以极低的概率映射成同一个hash值。我们把这样的函数,叫做LSH(局部敏感哈希)
其参考连接
https://zhuanlan.zhihu.com/p/46164294

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值