2020年江苏中考数学能用计算机吗,2020年【中考数学】真题及模拟:几何探究型问题(原卷版)(江苏专用).docx...

中考真题·模拟引申

PAGE 1

精品资源·备战中考

『真金试炼·备战中考』『中考真题·分项详解』

『真金试炼·备战中考』

『中考真题·分项详解』

编在前面:

历年的中考卷可以让学生认识到中考的题型,命题风格,各知识板块的分值分布,考查的重点及难点。这对于初三学生备战中考具有很大的指导意义。而且历年的中考真题还有中考风向标的作用,学生可以通过中考试卷分析命题趋势自我预测一下可能会出现的重点难点。这对于学生来说帮助非常大。

很多学生在初三在复习阶段会买很多的预测试卷儿或者是模拟题。虽然也能够帮助学生扩展题面见识更多的题型,但是这些复习资料是与中考真题相比是无法比拟的。利用好中考真题可以获得事半功倍的效果。

老师通常会在中考第二轮复习期间要求学生做至少三遍中考真题,每一遍都会有不同的侧重点。通常第一遍就是按照中考节奏去完成试卷。目的就是为了让学生能够掌握中考的节奏。了解中考题试卷难易的题型分布等。中考真题通常是80%是基础题型,20%是难题。第一遍做中考真题并不强调分数的重要性。主要是要把握中考的做题节奏,合理安排时间。第二遍通常要注重准确率。因为通过第一遍做题和对答案以后,需要花时间对错题进行分析,对难题做出归纳总结。掌握中考真题的做题思路和方法。而且在做第二遍的时候,要尽可能的去缩短时间。同时避免再犯第一次做题的错误,以能够锻炼做题的速度和准确率。做第三遍的时候就要要求百分之百的正确率。因为经过前两次的反复练习,对中考真题已经很熟悉。尤其是对中考试卷进行研究以后,那么对于平时的模拟考试,就会显得非常简单。一般情况下模拟考试的题型都能够在之前的中考真题中找到真实题型!需要注意的是,如果在第三次,做中考真题的时候还会出现错误,那就需要好好地反省一下了。

中考真题的作用是独一无二的,你做再多的模拟试卷都不如做一套中考真题作用大,所以在考试前一定要认真做中考真题,并总结分析真题规律!

专题18 几何探究型问题

一.解答题(共12小题)

1.(2020?南通)矩形中,,.将矩形折叠,使点落在点处,折痕为.

(1)如图①,若点恰好在边上,连接,求的值;

(2)如图②,若是的中点,的延长线交于点,求的长.

2.(2020?南通)【了解概念】

有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.

【理解运用】

(1)如图①,对余四边形中,,,,连接.若,求的值;

(2)如图②,凸四边形中,,,当时,判断四边形是否为对余四边形.证明你的结论;

【拓展提升】

(3)在平面直角坐标系中,点,,,四边形是对余四边形,点在对余线上,且位于内部,.设,点的纵坐标为,请直接写出关于的函数解析式.

3.(2020?苏州)问题1:如图①,在四边形中,,是上一点,,.求证:.

问题2:如图②,在四边形中,,是上一点,,.求的值.

4.(2020?苏州)如图,已知,是的平分线,是射线上一点,.动点从点出发,以的速度沿水平向左作匀速运动,与此同时,动点从点出发,也以的速度沿竖直向上作匀速运动.连接,交于点.经过、、三点作圆,交于点,连接、.设运动时间为,其中.

(1)求的值;

(2)是否存在实数,使得线段的长度最大?若存在,求出的值;若不存在,说明理由.

(3)求四边形的面积.

5.(2020?南京)如图,在和△中,、分别是、上一点,.

(1)当时,求证△.

证明的途径可以用下面的框图表示,请填写其中的空格.

(2)当时,判断与△是否相似,并说明理由.

6.(2020?南京)如图①,要在一条笔直的路边上建一个燃气站,向同侧的、两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.

(1)如图②,作出点关于的对称点,线段与直线的交点的位置即为所求,即在点处建燃气站,所得路线是最短的.

为了证明点的位置即为所求,不妨在直线1上另外任取一点,连接、,证明.请完成这个证明.

(2)如果在、两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).

①生态保护区是正方形区域,位置如图③所示;

②生态保护区是圆形区域,位置如图④所示.

7.(2020?泰州)如图,正方形的边长为6,为的中点,为等边三角形,过点作的垂线分别与边、相交于点、,点、分别在线段、上运动,且满足,连接.

(1)求证:.

(2)当点在线段上时,试判断的值是否变化?如果不变,求出这个值,如果变化,请说明理由.

(3)设,点关于的对称点为,若点落在的内部,试写出的范围,并说明理由.

8.(2020?扬州)如图1,已知点在四边形的边上,且,平分,与交于点,分别与、交于点、.

(1)求证:;

(2)如图2,若,求的值;

(3)当四边形的周长取最大值时,求的值.

9.(2020?连云港)(1)如图1,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值