Redis 应用实践:从基础到高级的全方位指南

前言

Redis 作为高性能内存数据库,已广泛应用于缓存、会话管理、消息队列等场景。然而,要充分发挥其价值,需深入理解其数据结构特性与最佳实践。本文将结合典型应用场景,通过 Java 代码示例详细讲解 Redis 的实战技巧,帮助开发者构建高效、稳定的分布式系统。

一、缓存设计与模式深度实践

1. 缓存穿透、击穿、雪崩解决方案

(1)缓存穿透(大量查询不存在的 Key)

问题:恶意攻击或无效查询导致请求直达数据库
解决方案:

  • 布隆过滤器预校验
    // 初始化布隆过滤器(Guava实现)
    BloomFilter<String> bloomFilter = BloomFilter.create(
        Funnels.stringFunnel(Charset.forName("UTF-8")), 100000, 0.01);
    
    // 写入时添加Key到布隆过滤器
    public void addToBloomFilter(String key) {
        bloomFilter.put(key);
        jedis.sadd("bloom:keys", key);  // Redis存储全量Key(可选,用于定期重建过滤器)
    }
    
    // 查询时先校验布隆过滤器
    public boolean checkBloomFilter(String key) {
        return bloomFilter.mightContain(key) || jedis.sismember("bloom:keys", key);
    }
    
(2)缓存击穿(热点 Key 过期瞬间大量请求)

问题:单个热点 Key 过期时,大量请求同时穿透到数据库
解决方案:

  • 分布式锁保护(见本文分布式锁章节)
  • 逻辑过期 + 异步重建
    // 带逻辑过期的缓存结构
    public class CachedValue {
        private String value;
        private long expireTime;  // 逻辑过期时间(非Redis TTL)
    }
    
    // 获取缓存(异步重建)
    public String getWithAsyncReload(String key) {
        CachedValue cached = (CachedValue) jedis.get(key);
        if (cached != null && System.currentTimeMillis() < cached.expireTime) {
            return cached.value;
        }
    
        String lockKey = "lock:reload:" + key;
        if (jedis.set(lockKey, "1", "NX", "EX", 10) != null) {
            try {
                String newValue = loadFromDB(key);
                CachedValue newCached = new CachedValue(newValue, System.currentTimeMillis() + 3600000);
                jedis.set(key, newCached, "NX", "EX", 3600);  // Redis TTL略长于逻辑过期时间
                return newValue;
            } finally {
                jedis.del(lockKey);
            }
        } else {
            // 等待100ms后重试(避免惊群效应)
            Thread.sleep(100);
            return getWithAsyncReload(key);
        }
    }
    
(3)缓存雪崩(大量 Key 同时过期)

问题:大面积缓存失效导致数据库压力突增
解决方案:

  • 随机化过期时间
    // 设置带随机偏移的过期时间
    jedis.setex(key, 3600 + ThreadLocalRandom.current().nextInt(600), value);
    
  • 热点 Key 永不过期 + 异步更新
    // 永不过期,但通过异步任务定期更新
    ScheduledExecutorService executor = Executors.newSingleThreadScheduledExecutor();
    executor.scheduleAtFixedRate(() -> {
        String newValue = loadFromDB(key);
        jedis.set(key, newValue);  // 无TTL,手动控制更新频率
    }, 0, 30, TimeUnit.MINUTES);
    

2. 缓存更新策略对比与实现

(1)失效模式(Cache-Aside)

流程:更新数据库后删除缓存

// 双写一致性保障(延迟双删)
public void updateWithInvalidation(String key, String value) {
    // 1. 更新数据库
    db.update(key, value);
    
    // 2. 删除缓存(主删)
    jedis.del(key);
    
    // 3. 异步延迟删除(解决并发脏读)
    CompletableFuture.runAsync(() -> {
        try {
            Thread.sleep(500);  // 等待可能的脏读请求完成
            jedis.del(key);
        } catch (InterruptedException e) {
            Thread.currentThread().interrupt();
        }
    });
}
(2)更新模式(Write-Through)

流程:先更新缓存,再更新数据库(适合对一致性要求极高场景)

public void updateWithWriteThrough(String key, String value) {
    // 1. 更新缓存
    jedis.setex(key, 3600, value);
    
    // 2. 更新数据库(可结合事务)
    db.update(key, value);
}
(3)刷新模式(Refresh-Ahead)

流程:在缓存过期前主动刷新

// 基于Redisson的自动刷新锁
RedissonClient redisson = Redisson.create();
RLock lock = redisson.getLock("refresh:" + key);

public String getWithAutoRefresh(String key) {
    String value = jedis.get(key);
    if (value == null) {
        lock.lock(30, TimeUnit.SECONDS);
        try {
            value = jedis.get(key);
            if (value == null) {
                value = loadFromDB(key);
                jedis.setex(key, 3600, value);
            }
            // 启动异步刷新任务
            redisson.getScheduler().schedule(() -> {
                lock.lock();
                try {
                    String newValue = loadFromDB(key);
                    jedis.setex(key, 3600, newValue);
                } finally {
                    lock.unlock();
                }
            }, 300, TimeUnit.SECONDS);  // 提前5分钟刷新
            return value;
        } finally {
            lock.unlock();
        }
    }
    return value;
}

二、分布式锁深化实践

1. 基于 SETNX 的简单分布式锁

// 基础实现(需手动释放锁)
public class SimpleRedisLock {
    private final Jedis jedis;
    private final String lockKey;
    private final String requestId;
    private final long expireTime;

    public SimpleRedisLock(Jedis jedis, String lockKey, long expireTime) {
        this.jedis = jedis;
        this.lockKey = lockKey;
        this.requestId = UUID.randomUUID().toString();
        this.expireTime = expireTime;
    }

    public boolean acquire() {
        // SETNX + 过期时间(避免死锁)
        String result = jedis.set(lockKey, requestId, "NX", "EX", expireTime);
        return "OK".equals(result);
    }

    public void release() {
        // 验证并删除(原子性保障)
        String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
        jedis.eval(script, 1, lockKey, requestId);
    }
}

// 使用示例
try (Jedis jedis = jedisPool.getResource()) {
    SimpleRedisLock lock = new SimpleRedisLock(jedis, "resource:lock", 10);
    if (lock.acquire()) {
        // 执行临界区代码
    }
}

2. RedLock 算法完整实现(基于多节点)

// RedLock核心逻辑
public class RedLock {
    private final List<Jedis> jedisInstances;
    private final long lockExpire;
    private final int retryCount;

    public RedLock(List<Jedis> jedisInstances, long lockExpire, int retryCount) {
        this.jedisInstances = jedisInstances;
        this.lockExpire = lockExpire;
        this.retryCount = retryCount;
    }

    public String acquire() {
        String lockValue = UUID.randomUUID().toString();
        long start = System.currentTimeMillis();
        int acquiredNodes = 0;

        try {
            for (int i = 0; i < retryCount; i++) {
                acquiredNodes = 0;
                for (Jedis jedis : jedisInstances) {
                    if ("OK".equals(jedis.set(lockKey, lockValue, "NX", "EX", lockExpire))) {
                        acquiredNodes++;
                    }
                }
                if (acquiredNodes > jedisInstances.size() / 2) {
                    return lockValue;  // 获得多数节点锁
                }
                // 等待重试
                Thread.sleep(100);
            }
        } finally {
            if (acquiredNodes > 0) {
                release(lockValue);  // 释放已获取的锁
            }
        }
        return null;
    }

    private void release(String lockValue) {
        String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
        jedisInstances.forEach(jedis -> jedis.eval(script, 1, lockKey, lockValue));
    }
}

3. 可重入分布式锁

// 可重入分布式锁实现
public class ReentrantRedisLock {
    private final JedisCluster jedisCluster;
    private final String lockKey;
    private final long lockExpire;
    private final ThreadLocal<LockInfo> threadLocal = new ThreadLocal<>();

    private static class LockInfo {
        String requestId;
        int lockCount;

        public LockInfo(String requestId) {
            this.requestId = requestId;
            this.lockCount = 1;
        }
    }

    public ReentrantRedisLock(JedisCluster jedisCluster, String lockKey, long lockExpire) {
        this.jedisCluster = jedisCluster;
        this.lockKey = lockKey;
        this.lockExpire = lockExpire;
    }

    public boolean tryLock() {
        LockInfo lockInfo = threadLocal.get();
        if (lockInfo != null) {
            lockInfo.lockCount++;
            return true;
        }

        String requestId = UUID.randomUUID().toString();
        String result = jedisCluster.set(lockKey, requestId, "NX", "EX", lockExpire);
        
        if ("OK".equals(result)) {
            threadLocal.set(new LockInfo(requestId));
            return true;
        }
        return false;
    }

    public void unlock() {
        LockInfo lockInfo = threadLocal.get();
        if (lockInfo == null) {
            throw new IllegalMonitorStateException("未获取锁");
        }

        if (--lockInfo.lockCount > 0) {
            return;
        }

        try {
            String script = 
                "if redis.call('get', KEYS[1]) == ARGV[1] then " +
                "   return redis.call('del', KEYS[1]) " +
                "else " +
                "   return 0 " +
                "end";
            jedisCluster.eval(script, 1, lockKey, lockInfo.requestId);
        } finally {
            threadLocal.remove();
        }
    }
}

三、会话管理

1. 基于 Redis 的会话存储

// 会话管理器实现
public class RedisSessionManager {
    private final JedisCluster jedisCluster;
    private final String sessionPrefix = "session:";
    private final int sessionTimeout = 1800;  // 30分钟

    public RedisSessionManager(JedisCluster jedisCluster) {
        this.jedisCluster = jedisCluster;
    }

    public void createSession(String sessionId, Map<String, Object> attributes) {
        String key = sessionPrefix + sessionId;
        Map<String, String> stringAttributes = attributes.entrySet().stream()
                .collect(Collectors.toMap(
                        Map.Entry::getKey,
                        e -> serialize(e.getValue())
                ));
        jedisCluster.hmset(key, stringAttributes);
        jedisCluster.expire(key, sessionTimeout);
    }

    public Map<String, Object> getSession(String sessionId) {
        String key = sessionPrefix + sessionId;
        Map<String, String> stringAttributes = jedisCluster.hgetAll(key);
        if (stringAttributes.isEmpty()) {
            return Collections.emptyMap();
        }
        
        // 延长会话有效期
        jedisCluster.expire(key, sessionTimeout);
        
        return stringAttributes.entrySet().stream()
                .collect(Collectors.toMap(
                        Map.Entry::getKey,
                        e -> deserialize(e.getValue())
                ));
    }

    public void invalidateSession(String sessionId) {
        jedisCluster.del(sessionPrefix + sessionId);
    }

    private String serialize(Object obj) {
        // 使用JSON序列化
        return JSON.toJSONString(obj);
    }

    private Object deserialize(String str) {
        // 反序列化为Map
        return JSON.parseObject(str, Object.class);
    }
}

2. 会话共享配置

// Spring Boot配置示例
@Configuration
public class SessionConfig extends AbstractHttpSessionApplicationInitializer {
    @Bean
    public JedisConnectionFactory connectionFactory() {
        RedisClusterConfiguration config = new RedisClusterConfiguration(
                Arrays.asList("node1:7000", "node2:7001", "node3:7002"));
        return new JedisConnectionFactory(config);
    }

    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        template.setConnectionFactory(factory);
        template.setKeySerializer(new StringRedisSerializer());
        template.setValueSerializer(new GenericJackson2JsonRedisSerializer());
        return template;
    }
}

四、限流与排行榜、计数器实战

1. 滑动窗口限流

// 滑动窗口限流实现
public class SlidingWindowRateLimiter {
    private final JedisCluster jedisCluster;
    private final String keyPrefix = "rate_limit:";
    private final int windowSize;  // 窗口大小(毫秒)
    private final int limit;       // 最大请求数

    public SlidingWindowRateLimiter(JedisCluster jedisCluster, int windowSize, int limit) {
        this.jedisCluster = jedisCluster;
        this.windowSize = windowSize;
        this.limit = limit;
    }

    public boolean tryAcquire(String identifier) {
        String key = keyPrefix + identifier;
        long now = System.currentTimeMillis();
        
        // 使用ZSET存储请求时间戳
        Pipeline pipeline = (Pipeline) jedisCluster.getClusterNodes().values().iterator().next().getResource().pipelined();
        pipeline.zremrangeByScore(key, 0, now - windowSize);  // 移除窗口外的记录
        pipeline.zadd(key, now, String.valueOf(now));         // 添加当前请求
        pipeline.expire(key, windowSize / 1000 + 1);          // 设置过期时间
        pipeline.zcard(key);                                   // 获取窗口内请求数
        
        List<Object> results = pipeline.syncAndReturnAll();
        long count = (Long) results.get(3);
        
        return count <= limit;
    }
}

2. 令牌桶算法

// 令牌桶限流实现
public class TokenBucketRateLimiter {
    private final JedisCluster jedisCluster;
    private final String keyPrefix = "token_bucket:";
    private final long rate;         // 令牌生成速率(个/秒)
    private final long capacity;     // 令牌桶容量

    public TokenBucketRateLimiter(JedisCluster jedisCluster, long rate, long capacity) {
        this.jedisCluster = jedisCluster;
        this.rate = rate;
        this.capacity = capacity;
    }

    public boolean tryAcquire(String identifier) {
        String script = 
            "local tokens_key = KEYS[1] " +
            "local timestamp_key = KEYS[2] " +
            "local rate = tonumber(ARGV[1]) " +
            "local capacity = tonumber(ARGV[2]) " +
            "local now = tonumber(ARGV[3]) " +
            "local requested = tonumber(ARGV[4]) " +
            " " +
            "local last_tokens = tonumber(redis.call('get', tokens_key) or capacity) " +
            "local last_refreshed = tonumber(redis.call('get', timestamp_key) or 0) " +
            " " +
            "local delta = math.max(0, now - last_refreshed) " +
            "local filled_tokens = math.min(capacity, last_tokens + (delta * rate / 1000)) " +
            "local allowed = filled_tokens >= requested " +
            "local new_tokens = filled_tokens " +
            "if allowed then " +
            "   new_tokens = filled_tokens - requested " +
            "end " +
            " " +
            "redis.call('set', tokens_key, new_tokens) " +
            "redis.call('set', timestamp_key, now) " +
            " " +
            "return allowed";

        List<String> keys = Arrays.asList(
                keyPrefix + identifier + ":tokens",
                keyPrefix + identifier + ":timestamp"
        );
        
        List<String> args = Arrays.asList(
                String.valueOf(rate),
                String.valueOf(capacity),
                String.valueOf(System.currentTimeMillis()),
                "1"  // 每次请求1个令牌
        );

        return (Long) jedisCluster.eval(script, keys, args) == 1;
    }
}

3. Sorted Set 实现实时排行榜

(1)实时点赞排行榜
// 点赞操作(+1分)
public void like(String userId, String itemId, long score) {
    jedis.zincrby("like:rank:" + itemId, 1, userId);
}

// 获取Top10点赞用户
public Set<Tuple> getTopLikes(String itemId, int limit) {
    return jedis.zrevrangeWithScores("like:rank:" + itemId, 0, limit - 1);
}

// 移除点赞记录
public void unlike(String userId, String itemId) {
    jedis.zrem("like:rank:" + itemId, userId);
}
(2)滑动窗口排行榜(按时间加权)
// 带时间衰减的分数计算
public void recordScore(String userId, double score) {
    long now = System.currentTimeMillis();
    double ttl = 86400000;  // 1天有效期
    double weight = Math.exp(-now / ttl);  // 指数衰减
    jedis.zadd("daily:rank", score * weight, userId);
}

4. 原子计数器进阶应用

(1)分段计数器(解决单 Key 性能瓶颈)
// 按小时分段计数
public long incrementHourlyCounter(String key) {
    String hourlyKey = key + ":" + LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyyMMddHH"));
    return jedis.incr(hourlyKey);
}

// 汇总当天所有时段计数
public long getDailyCount(String key) {
    String pattern = key + ":" + LocalDate.now().format(DateTimeFormatter.ofPattern("yyyyMMdd")) + "*";
    try (Scan scan = jedis.scan(ScanParams.scanParams().match(pattern).count(100))) {
        long total = 0;
        for (String k : scan.iterator()) {
            total += Long.parseLong(jedis.get(k));
        }
        return total;
    }
}
(2)全局唯一 ID 生成(INCR 优化)
// 带业务前缀的ID生成器
public class RedisIdGenerator {
    private final Jedis jedis;
    private final String prefix;

    public RedisIdGenerator(Jedis jedis, String prefix) {
        this.jedis = jedis;
        this.prefix = prefix;
    }

    public long nextId() {
        return jedis.incr(prefix + ":id");
    }
}

五、会话缓存与分布式 Session 增强

1. 基于 Redis 的 Session 共享方案(Spring Session 整合)

(1)Spring Boot 配置
// application.properties
spring.session.store-type=redis
spring.redis.host=redis-host
spring.redis.port=6379

// 自定义Session属性序列化
@Bean
public RedisSerializer<Object> springSessionDefaultRedisSerializer() {
    return new GenericJackson2JsonRedisSerializer();
}
(2)自定义 Session 管理器
public class CustomRedisSession {
    private final RedisTemplate<String, Object> redisTemplate;
    private final String sessionPrefix = "session:";

    public CustomRedisSession(RedisTemplate<String, Object> redisTemplate) {
        this.redisTemplate = redisTemplate;
        redisTemplate.setKeySerializer(new StringRedisSerializer());
    }

    public void createSession(String sessionId, Map<String, Object> attributes) {
        redisTemplate.opsForHash().putAll(sessionPrefix + sessionId, attributes);
        redisTemplate.expire(sessionPrefix + sessionId, 30, TimeUnit.MINUTES);
    }

    public Map<String, Object> getSession(String sessionId) {
        return redisTemplate.opsForHash().entries(sessionPrefix + sessionId);
    }
}

六、消息队列与任务队列实战

1. List 实现简单队列(生产者 - 消费者模型)

(1)阻塞式消费(支持优先级)
// 生产者(按优先级入队)
public void produce(String queueName, int priority, String message) {
    String priorityQueue = priority + ":" + queueName;
    jedis.lpush(priorityQueue, message);
}

// 消费者(多优先级队列监听)
public String consume(String... queues) {
    List<String> result = jedis.blpop(0, queues);  // 0表示永久阻塞
    return result != null ? result.get(1) : null;
}

2. 基于 Streams 的高级队列

// 生产者
public String produce(String streamKey, Map<String, String> message) {
    try (Jedis jedis = jedisPool.getResource()) {
        return jedis.xadd(streamKey, "*", message);
    }
}

// 消费者(独立模式)
public List<Map.Entry<String, List<Map.Entry<String, String>>>>> consume(String streamKey, String lastId, int count) {
    try (Jedis jedis = jedisPool.getResource()) {
        return jedis.xread(count, streamKey, lastId);
    }
}

// 消费者组模式
public void consumeWithGroup(String streamKey, String groupName, String consumerName) {
    try (Jedis jedis = jedisPool.getResource()) {
        // 创建消费者组(如果不存在)
        try {
            jedis.xgroupCreate(streamKey, groupName, "0-0", true);
        } catch (Exception e) {
            // 组已存在
        }
        
        // 从消费者组获取消息
        Map.Entry<String, List<Map.Entry<String, String>>>> result = 
                jedis.xreadGroup(groupName, consumerName, 1, 0, true, streamKey, ">");
        
        if (result != null) {
            String messageId = result.getValue().get(0).getKey();
            // 处理消息
            processMessage(result.getValue().get(0).getValue());
            // 确认消息处理完成
            jedis.xack(streamKey, groupName, messageId);
        }
    }
}

3. 基于 Sorted Set 的延迟队列设计

(1)延迟任务实现
// 延迟队列核心结构(score为到期时间戳)
public class DelayQueue {
    private final Jedis jedis;
    private final String queueKey = "delay:queue";

    public DelayQueue(Jedis jedis) {
        this.jedis = jedis;
    }

    // 提交延迟任务(延迟秒数)
    public void submitDelayTask(String taskId, String payload, long delaySeconds) {
        long expireTime = System.currentTimeMillis() + delaySeconds * 1000;
        jedis.zadd(queueKey, expireTime, taskId + ":" + payload);
    }

    // 轮询获取到期任务
    public List<String> pollExpiredTasks() {
        long now = System.currentTimeMillis();
        // 获取所有到期任务(score <= now)
        Set<String> tasks = jedis.zrangeByScore(queueKey, 0, now, new ScanParams().count(100));
        if (tasks.isEmpty()) {
            return Collections.emptyList();
        }
        // 移除已处理任务
        jedis.zrem(queueKey, tasks.toArray(new String[0]));
        return new ArrayList<>(tasks);
    }
}

// 消费者示例
public class DelayTaskConsumer {
    private final DelayQueue delayQueue;

    public DelayTaskConsumer(DelayQueue delayQueue) {
        this.delayQueue = delayQueue;
    }

    public void start() {
        while (true) {
            List<String> tasks = delayQueue.pollExpiredTasks();
            for (String task : tasks) {
                processTask(task);
            }
            try {
                Thread.sleep(100);  // 控制轮询频率
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
                break;
            }
        }
    }
}

六、分布式 ID 生成

1. 基于 INCR 的简单 ID 生成器

public class RedisIdGenerator {
    private final JedisCluster jedisCluster;
    private final String keyPrefix = "id_generator:";
    private final long initialValue;

    public RedisIdGenerator(JedisCluster jedisCluster, String businessType, long initialValue) {
        this.jedisCluster = jedisCluster;
        this.initialValue = initialValue;
        // 初始化ID计数器
        jedisCluster.setnx(keyPrefix + businessType, String.valueOf(initialValue));
    }

    public long nextId(String businessType) {
        return jedisCluster.incr(keyPrefix + businessType);
    }
}

2. Snowflake 算法实现

public class SnowflakeIdGenerator {
    private final JedisCluster jedisCluster;
    private final String workerIdKey = "snowflake:worker_id";
    private final String datacenterIdKey = "snowflake:datacenter_id";
    private final long workerId;
    private final long datacenterId;
    private final long startTimeStamp = 1609459200000L;  // 2021-01-01
    private final long workerIdBits = 5L;
    private final long datacenterIdBits = 5L;
    private final long sequenceBits = 12L;
    private final long workerIdShift = sequenceBits;
    private final long datacenterIdShift = sequenceBits + workerIdBits;
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
    private long sequence = 0L;
    private long lastTimestamp = -1L;

    public SnowflakeIdGenerator(JedisCluster jedisCluster) {
        this.jedisCluster = jedisCluster;
        this.workerId = initId(workerIdKey, workerIdBits);
        this.datacenterId = initId(datacenterIdKey, datacenterIdBits);
    }

    private synchronized long initId(String key, long maxId) {
        String script = 
            "local current = redis.call('incr', KEYS[1]) " +
            "if current > tonumber(ARGV[1]) then " +
            "   current = 1 " +
            "   redis.call('set', KEYS[1], current) " +
            "end " +
            "return current";
        
        return (Long) jedisCluster.eval(script, 1, key, String.valueOf(maxId));
    }

    public synchronized long nextId() {
        long currentTimestamp = System.currentTimeMillis();
        
        // 处理时钟回拨
        if (currentTimestamp < lastTimestamp) {
            throw new RuntimeException("Clock moved backwards. Refusing to generate id for " + 
                    (lastTimestamp - currentTimestamp) + " milliseconds");
        }
        
        if (currentTimestamp == lastTimestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                // 序列号溢出,等待下一毫秒
                currentTimestamp = waitNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }
        
        lastTimestamp = currentTimestamp;
        
        return ((currentTimestamp - startTimeStamp) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }

    private long waitNextMillis(long lastTimestamp) {
        long timestamp = System.currentTimeMillis();
        while (timestamp <= lastTimestamp) {
            timestamp = System.currentTimeMillis();
        }
        return timestamp;
    }
}

结语

Redis 凭借丰富的数据结构和原子操作能力,为分布式系统提供了多样化的解决方案。本文通过缓存设计、分布式锁、会话管理、限流、消息队列和 ID 生成等典型场景,详细展示了 Redis 的应用实践方法。在实际开发中,需根据业务需求选择合适的数据结构和优化策略,同时关注集群部署、监控调优等方面,以构建高性能、高可用的 Redis 应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一切皆有迹可循

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值