深度学习技术在熔池检测方面的研究取得了很大的进展。近年来,越来越多的研究者使用深度学习方法来开发熔池检测系统,并取得了很好的效果。
例如,许多研究者使用卷积神经网络 (Convolutional Neural Network, CNN) 来识别熔池的位置和形状。同时,一些研究者还使用视觉传感器(如激光雷达和摄像机)来搜集熔池数据,并使用深度学习方法来识别熔池和评估它们的严重性。
此外,最近也有研究者开展了使用生成对抗网络 (Generative Adversarial Network, GAN) 来生成熔池图像的研究。这些生成的图像可以用于训练熔池检测模型,从而提高熔池检测的准确性。
总