深度学习熔池检测研究进展

深度学习技术在熔池检测方面的研究取得了很大的进展。近年来,越来越多的研究者使用深度学习方法来开发熔池检测系统,并取得了很好的效果。

例如,许多研究者使用卷积神经网络 (Convolutional Neural Network, CNN) 来识别熔池的位置和形状。同时,一些研究者还使用视觉传感器(如激光雷达和摄像机)来搜集熔池数据,并使用深度学习方法来识别熔池和评估它们的严重性。

此外,最近也有研究者开展了使用生成对抗网络 (Generative Adversarial Network, GAN) 来生成熔池图像的研究。这些生成的图像可以用于训练熔池检测模型,从而提高熔池检测的准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值