python堆排序代码_Python实现的堆排序算法原理与用法实例分析

本文介绍了Python实现堆排序的详细步骤,包括构建小顶堆、调整堆以及堆排序的过程,并提供了完整的代码示例。通过示例展示了如何对随机整数数组进行排序,最后输出排序结果。
摘要由CSDN通过智能技术生成

本文实例讲述了Python实现的堆排序算法。分享给大家供大家参考,具体如下:

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

具体代码如下:

#-*- coding: UTF-8 -*-

import numpy as np

def MakeHeap(a):

for i in xrange(a.size / 2 - 1, -1, -1):#对非叶子节点的子节点进行调节,构建堆

AdjustHeap(a, i, a.size)

def AdjustHeap(a, i, n):

j = i*2 +1 #选择节点i的左子节点

x = a[i] #选择节点的数值

while j < n: #循环对子节点及其子树进行调整

if j + 1 < n and a[j+1] < a[j]: #找到节点i子节点的最小值

j += 1

if a[j] >= x : #若两个子节点均不小于该节点,则不同调整

break

a[i], a[j] = a[j], a[i] #将节点i的数值与其子节点中最小者的数值进行对调

i = j #将i赋为改变的子节点的索引

j = i*2 + 1 #将j赋为节点对应的左子节点

def HeapSort(a):

MakeHeap(a) #构建小顶堆

for i in xrange(a.size - 1,0, -1): #对堆中的元素逆向遍历

a[i], a[0] = a[0], a[i] #将堆顶元素与堆中最后一个元素进行对调,因为小顶堆中堆顶元素永远最小,因此,输出即为最小元素

AdjustHeap(a, 0, i) #重新调整使剩下的元素仍为一个堆

if __name__ == '__main__':

a = np.random.randint(0, 10, size = 10)

print "Before sorting..."

print "---------------------------------------------------------------"

print a

print "---------------------------------------------------------------"

HeapSort(a)

print "After sorting..."

print "---------------------------------------------------------------"

print a[::-1] #因为堆排序按大到小进行排列,采用a[::-1]对其按从小到大进行输出

print "---------------------------------------------------------------"

运行结果:

20171122105802680.jpg?20171022105846

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

本文标题: Python实现的堆排序算法原理与用法实例分析

本文地址: http://www.cppcns.com/jiaoben/python/211926.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值