在使用 PyTorch 调用预训练的 MobileNet 模型进行图像分类时,首先需要导入相应的库和模型,然后加载预训练权重,接着对待分类图像进行预处理,最后使用模型进行预测并进行分类。具体实现步骤如下:
- 导入需要的库,如 torch、torchvision。
- 加载预训练的 MobileNet 模型,并设置模型的参数 num_classes=10。
- 加载预训练权重。
- 进行图像预处理(如:resize, normalize)
- 使用 forward() 函数将图像输入模型并进行预测。
- 取得每一类的概率
- 得出最大的概率对应的类