Description
Linear layers are single layers of linear neurons. They may be static, with input delays of
0, or dynamic, with input delays greater than 0. They can be trained on simple linear time
series problems, but often are used adaptively to continue learning while deployed so they can
adjust to changes in the relationship between inputs and outputs while being used.
If a network is needed to solve a nonlinear time series relationship, then better networks
to try include timedelaynet, narxnet, and narnet.
linearlayer(inputDelays,widrowHoffLR) takes these arguments,
inputDelaysRow vector of increasing 0 or positive delays (default = 0)
widrowHoffLRWidrow-Hoff learning rate (default = 0.01)
and returns a linear layer.
If the learning rate is too small, learning will happen very slowly. However, a greater
danger is that it may be too large and learning will become unstable resulting in large changes
to weight vectors and errors increasing instead of decreasing. If a data set is available which
characterizes the relationship the layer is to learn, the maximum stable learning rate can be
calculated with maxlinlr.