matlab linearlayer,Linear layer

Description

Linear layers are single layers of linear neurons. They may be static, with input delays of

0, or dynamic, with input delays greater than 0. They can be trained on simple linear time

series problems, but often are used adaptively to continue learning while deployed so they can

adjust to changes in the relationship between inputs and outputs while being used.

If a network is needed to solve a nonlinear time series relationship, then better networks

to try include timedelaynet, narxnet, and narnet.

linearlayer(inputDelays,widrowHoffLR) takes these arguments,

inputDelaysRow vector of increasing 0 or positive delays (default = 0)

widrowHoffLRWidrow-Hoff learning rate (default = 0.01)

and returns a linear layer.

If the learning rate is too small, learning will happen very slowly. However, a greater

danger is that it may be too large and learning will become unstable resulting in large changes

to weight vectors and errors increasing instead of decreasing. If a data set is available which

characterizes the relationship the layer is to learn, the maximum stable learning rate can be

calculated with maxlinlr.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值