(十)神经网络-线性层

1.线性神经网络模型

在这里插入图片描述

2.Linear Layers参数介绍

在这里插入图片描述

3.代码实战

  • 实现下图Fully Connected的类似部分(图中数据与代码无关)
    在这里插入图片描述
import torch
from torch import nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader


class My_module(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.linear = nn.Linear(in_features=196608, out_features=10)  # 使torch.Size([196608])->torch.Size([10])

    def forward(self, x):
        output = self.linear(x)
        return output


my_module = My_module()
test_dataset = datasets.CIFAR10(root="datasets", transform=transforms.ToTensor(), download=True)
test_dataloader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=True, drop_last=False)
for data in test_dataloader:
    imgs, labels = data
    imgs_tensor = torch.flatten(imgs)  # torch.flatten()作用是将张量展平,使torch.Size([64, 3, 32, 32])->torch.Size([196608])
    imgs_linear = my_module(imgs_tensor)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值