GAN 网络通常用于生成图片数据,但是它也可以用于非图片数据,如音频、文本、时间序列等。对于非图片数据,通常需要将其转换为数值矩阵,再输入到 GAN 网络中进行训练。具体的方法因数据类型而异,需要根据具体情况进行设计。
例如,对于文本数据,可以使用词嵌入方法将每个词转换为对应的数值向量,然后作为 GAN 的输入。对于音频数据,可以使用声谱图或其他频域表示法将音频信号转换为图像数据,再输入到 GAN 网络中进行训练。
GAN 网络通常用于生成图片数据,但是它也可以用于非图片数据,如音频、文本、时间序列等。对于非图片数据,通常需要将其转换为数值矩阵,再输入到 GAN 网络中进行训练。具体的方法因数据类型而异,需要根据具体情况进行设计。
例如,对于文本数据,可以使用词嵌入方法将每个词转换为对应的数值向量,然后作为 GAN 的输入。对于音频数据,可以使用声谱图或其他频域表示法将音频信号转换为图像数据,再输入到 GAN 网络中进行训练。
>