ShuffleNet v2:https://link.springer.com/chapter/10.1007/978-3-030-01264-9_8
pytorch代码:https://github.com/Randl/ShuffleNetV2-pytorch/blob/master/model.py
keras代码:https://github.com/opconty/keras-shufflenetV2
ShuffleNet v2
0. 前言
目前大部分的模型加速和压缩文章在对比加速效果时用的指标都是FLOPs(float-point operations),这个指标主要衡量的就是卷积层的乘法操作。但是这篇文章通过一系列的实验发现FLOPs并不能完全衡量模型速度,这主要有一下两个原因:
- 除了FLOPs会影响速度外,还有其他因素会造成影响。比如:内存访问消耗时间(memory access cost- MAC)这对模型速度影响比较大,但是却难以在FLOPs指标中体现出来; 还有比如并行程度(degree of parallelism)。
- 对于具有相同FLOPs的模型在不同的平台会有不同的运行时间。
因此,作者提出了两个设计网络应该考虑的两个准则:
- 首先应该考虑直接指标(比如速度),而不是考虑简介的指标(比如FLOPs)
- 其次这些指标应该在目标平台上同一进行评价
在论文接下来的部分,作者首先通过实验得出高效网络设计的四个准则,然后根据这些准则对现有ShuffleNet v1进行改进,提出ShuffleNet v2。
1. 高效网络设计的准则
作者首先对现有一些网络各个部分占用的时间进行了实验统计,如图1
从图1可以看出,FLOPs只考虑了卷积操作,虽然在网络运行时间中占了很大比重,但像data I/O, datashuffle and element-wise operations (AddTensor, ReLU, etc) 也是不容忽视的,因此只考虑FLOPs是不合理的,鉴于上述考虑,作者设计了四组对比实验来探究网络设计的高效准则。
1. Equal Channel width Minimizes Memory Access Cost (MAC)(等通道宽度可最大限度地降低内存访问成本)
结论是卷积层的输入和输出特征通道数相等时MAC最小,此时模型速度最快。
轻量级网络通常采用通道分离卷积(depthwise seperate conviolution), 而当中pointwise convolution(也就是11卷积)占了很大比重的计算复杂度,所以作者以11卷积为例,研究了11卷积与MAC之间的关系。
假设一个11卷积层的输入特征通道数是 c 1 c_{1} c1,输出特征尺寸是h和w,输出特征通道数是 c 2 c_{2} c2,那么这样一个1*1卷积层的FLOPs即为 B = h w c 1 c 2 B=hwc_{1}c_{2} B=hwc1c2.
那么MAC,即 内存访问操作数为:
M A C = h w ( c 1 + c 2 ) + c 1 c 2 ( 1 ) \mathrm{MAC}=h w\left(c_{1}+c_{2}\right)+c_{1} c_{2}\text{ }\text{ }\text{ }\text{ }(1) MAC=hw(c1+c2)+c1c2 (1)
其中 h w c 1 hwc_{1} hwc1表示输入特征所需存储空间, h w c 2 hwc_{2} hwc2表示输出特征所需存储空间, c 1 c 2 c_{1}c_{2} c1c2表示卷积核所需存储空间。
根据均值不等式( a + b > = 2 a b a+b>=2\sqrt{ab} a