torch中的summary
通过summary可以查看模型每层的输出形状,每层的参数数量,总的参数数量,以及模型大小等信息。
定义一个简单的模型LeNet
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(32*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.relu(self.conv1(x)) # input(3, 32, 32) output(16, 28, 28)
x = self.pool1(x) # output(16, 14, 14)
x = F.relu(self.conv2(x)) # output(32, 10, 10)
x = self.pool2(x) # output(32, 5, 5)
x = x.view(-1, 32*5*5) # output(32*5*5)
x = F.relu(self.fc1(x)) # output(120)
x = F.relu(self.fc2(x)) # output(84)
x = self.fc3(x) # output(10)
return x
查看参数等信息
if __name__ == '__main__':
net = LeNet()
summary(model=net, input_size=(3,32,32),batch_size=2, device="cpu")
####### 输出
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [2, 16, 28, 28] 1,216
MaxPool2d-2 [2, 16, 14, 14] 0
Conv2d-3 [2, 32, 10, 10] 12,832
MaxPool2d-4 [2, 32, 5, 5] 0
Linear-5 [2, 120] 96,120
Linear-6 [2, 84] 10,164
Linear-7 [2, 10] 850
================================================================
Total params: 121,182
Trainable params: 121,182
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.02
Forward/backward pass size (MB): 0.30
Params size (MB): 0.46
Estimated Total Size (MB): 0.79