Linux普通用户安装指定cuda版本,超简单方法

文章介绍了如何解决在使用tinny-cuda-nn时,由于cmake编译时CUDA版本与conda虚拟环境中torch版本不匹配的问题,包括注释.bashrc中的cuda路径,安装对应torch版本的cuda,确认环境变量以及最终的编译步骤。
部署运行你感兴趣的模型镜像

假如你想安装tinny-cuda-nn,经常在cmake编译的时候,报本机的cuda版本和conda虚拟环境下安装torch版本对应的cuda不匹配。

以下是解决办法:

第一步:把 .bashrc 下的cuda指定路径给注释掉。

第二步:安装你torch版本对应的cuda版本,比如我虚拟环境安装的torch版本为:

pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118

再安装torch指定的cuda版本,比如cuda-11.8

conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit

其他版本可以去这里查Cuda :: Anaconda.org

第三步:查看你所在的虚拟环境ncvv -V 的输出是否为 cuda11.8

第四步:去编译

tiny-cuda-nn$ cd bindings/torch
tiny-cuda-nn/bindings/torch$ python setup.py install

显示安装成功了!

 

第五步:把第一步的注释给去掉,恢复原来的cuda路径。

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

<think>好的,我现在需要处理用户关于在服务器系统级别安装CUDA的指南或教程的请求。首先,我得回顾用户提供的引用内容,看看有没有相关的信息。 引用[1]提到了CUDA Toolkit安装后的提示,包括环境变量的设置和驱动未安装的警告。这说明安装过程中驱动部分可能被跳过,需要用户手动处理。引用[2]和[3]更多涉及服务器操作系统监控和安装流程,但用户的问题集中在CUDA安装,所以可能需要更关注引用[1]的内容。 用户明确想了解服务器级别的CUDA安装指南,因此需要整理步骤,包括系统检查、驱动安装CUDA Toolkit安装以及环境配置。引用[1]中提到的PATH和LD_LIBRARY_PATH设置是关键,必须包含在指南里。另外,驱动版本至少515.105对于CUDA 11.7是必需的,这点需要强调,避免安装后出现不兼容问题。 接下来,要确保步骤清晰,结构合理。先检查系统兼容性,然后处理依赖项,接着安装驱动和CUDA Toolkit,最后配置环境变量。同时,用户可能遇到驱动未安装的问题,需要根据引用[1]的提示,指导用户如何通过安装命令添加驱动。 此外,用户可能需要验证安装是否成功,所以添加验证步骤,如编译示例代码或运行nvidia-smi。常见问题部分应涵盖驱动安装失败、环境变量未正确设置以及权限问题,这些都是安装过程中常见的问题点。 最后,生成的相关问题需要围绕用户可能的后续需求,比如验证安装、处理依赖项、多版本管理等,帮助用户进一步解决问题。</think>### 服务器系统级别 CUDA 安装指南 #### 1. **系统环境检查** - **操作系统兼容性**:确认服务器操作系统版本符合CUDA要求(如Ubuntu 16.04/18.04/20.04、CentOS 7/8等)。可通过命令 `cat /etc/os-release` 查看系统信息[^3]。 - **GPU驱动兼容性**:CUDA Toolkit需要与NVIDIA驱动版本匹配。例如,CUDA 11.7要求驱动版本至少为515.105[^1]。 - **依赖项安装**:安装必要开发工具: ```bash sudo apt-get install build-essential linux-headers-$(uname -r) # Ubuntu/Debian # 或 sudo yum groupinstall "Development Tools" # CentOS/RHEL ``` #### 2. **安装NVIDIA驱动(若未预装)** - **禁用Nouveau驱动**(开源驱动): ```bash echo "blacklist nouveau" | sudo tee /etc/modprobe.d/blacklist-nouveau.conf sudo update-initramfs -u # Ubuntu/Debian # 或 sudo dracut --force # CentOS/RHEL ``` - **下载官方驱动**:从[NVIDIA官网](https://www.nvidia.com/Download/index.aspx)选择适配GPU的驱动版本。 - **安装驱动**: ```bash sudo bash NVIDIA-Linux-x86_64-<version>.run --silent --driver ``` #### 3. **安装CUDA Toolkit** - **下载CUDA安装包**:从[NVIDIA CUDA下载页](https://developer.nvidia.com/cuda-toolkit-archive)选择对应版本(如11.7)。 - **执行安装**(以`.run`文件为例): ```bash sudo sh cuda_11.7.0_<system>.run --silent --toolkit --samples --samplespath=/usr/local/cuda-11.7/samples ``` - **关键选项**: - 选择`Install`并取消勾选驱动(若已单独安装)[^1]。 - 确认安装路径为`/usr/local/cuda-11.7`。 #### 4. **配置环境变量** - 添加以下内容到`~/.bashrc`或系统级配置文件: ```bash export PATH=/usr/local/cuda-11.7/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` - 生效配置: ```bash source ~/.bashrc sudo ldconfig ``` #### 5. **验证安装** - **检查驱动状态**: ```bash nvidia-smi # 应显示GPU信息和驱动版本 ``` - **编译CUDA示例**: ```bash cd /usr/local/cuda-11.7/samples/1_Utilities/deviceQuery make && ./deviceQuery # 输出应为"Result = PASS" ``` #### 常见问题 1. **驱动安装失败**:确保内核头文件已安装(如`linux-headers-$(uname -r)`)[^2]。 2. **环境变量未生效**:检查路径是否包含空格或特殊字符,或尝试重启系统。 3. **权限问题**:使用`sudo`执行安装命令,并确保用户对`/usr/local/cuda-11.7`有访问权限。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值