AttributeError: 'NoneType' object has no attribute 'log_softmax'

我的问题是

outputs = net(inputs)  
loss = criterion(outputs, labels)  

经过debug,第二行报错,
在这段代码中,得到的outputs是个None类型,criterion要传入的并不是none,所以得不到想要的loss
查看net类,在该类的唯一的方法中的返回只有(return),相当于返回空值,将这个net的结果(model)返回即可

class Net(nn.Module):  # 定义网络,继承torch.nn.Module
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)  # 卷积层
        self.pool = nn.MaxPool2d(2, 2)  # 池化层
        self.conv2 = nn.Conv2d(6, 16, 5)  # 卷积层
        self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 全连接层
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 62)  # 10个输出


    def forward(self, x):  # 前向传播

        x = self.pool(F.relu(self.conv1(x)))  # F就是torch.nn.functional
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        # .view( )是一个tensor的方法,使得tensor改变size但是元素的总数是不变的。
        # 从卷基层到全连接层的维度转换

        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return 

改为:(只将这个model的最后一个返回值返回即可)

class Net(nn.Module):  # 定义网络,继承torch.nn.Module
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)  # 卷积层
        self.pool = nn.MaxPool2d(2, 2)  # 池化层
        self.conv2 = nn.Conv2d(6, 16, 5)  # 卷积层
        self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 全连接层
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 62)  # 10个输出


    def forward(self, x):  # 前向传播

        x = self.pool(F.relu(self.conv1(x)))  # F就是torch.nn.functional
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        # .view( )是一个tensor的方法,使得tensor改变size但是元素的总数是不变的。
        # 从卷基层到全连接层的维度转换

        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值