我的问题是
outputs = net(inputs)
loss = criterion(outputs, labels)
经过debug,第二行报错,
在这段代码中,得到的outputs是个None类型,criterion要传入的并不是none,所以得不到想要的loss
查看net类,在该类的唯一的方法中的返回只有(return),相当于返回空值,将这个net的结果(model)返回即可
class Net(nn.Module): # 定义网络,继承torch.nn.Module
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5) # 卷积层
self.pool = nn.MaxPool2d(2, 2) # 池化层
self.conv2 = nn.Conv2d(6, 16, 5) # 卷积层
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 全连接层
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 62) # 10个输出
def forward(self, x): # 前向传播
x = self.pool(F.relu(self.conv1(x))) # F就是torch.nn.functional
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
# .view( )是一个tensor的方法,使得tensor改变size但是元素的总数是不变的。
# 从卷基层到全连接层的维度转换
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return
改为:(只将这个model的最后一个返回值返回即可)
class Net(nn.Module): # 定义网络,继承torch.nn.Module
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5) # 卷积层
self.pool = nn.MaxPool2d(2, 2) # 池化层
self.conv2 = nn.Conv2d(6, 16, 5) # 卷积层
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 全连接层
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 62) # 10个输出
def forward(self, x): # 前向传播
x = self.pool(F.relu(self.conv1(x))) # F就是torch.nn.functional
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
# .view( )是一个tensor的方法,使得tensor改变size但是元素的总数是不变的。
# 从卷基层到全连接层的维度转换
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x