旅行者的预算
标签:贪心算法
题目描述
一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(假设出发时油箱是空的)。给定两个城市之间的距离D1、汽车油箱的容量C(以升为单位)、每升汽油能行驶的距离D2、出发点每升汽油价格P和沿途油站数N(N可以为零),油站i离出发点的距离Di、每升汽油价格Pi(i=1,2,…,Ni=1,2,…)。计算结果四舍五入至小数点后两位。如果无法到达目的地,则输出“No Solution”。N≤6,其余数字≤500
输入样例1
275.6 11.9 27.4 2.8 2
102.0 2.9
220.0 2.2输出样例1
26.95
输入样例2
1 1 1 1 0
输出样例2
1.00
输入样例3
275.6 11.9 10.4 2.8 3
102.0 2.1
160.2 2.3
220.0 2.2输出样例3
62.99
题目分析
思路:
- 每一次找到可到达的所有站点中,比当前油费便宜且最便宜的站点。
- 如果找到了,就加刚好到该站点的有即可。
- 如果找不到,就加满油,到能够到达的最后一个站点。
- 如果到达不了,做个标记输出No Solution.
注意:
- n==0时,设计算法有可能会考虑不到。
- 到达终点之前就结束计算了,终点可以单独处理。
- 加满油的那一步,在算法上的处理是,假设在该站点已经没油了(费用按照满油计算),再计算出重复的部分,最后减去就好,详细看算法。(这步没有处理好,样例3会输出错误:63.05。
代码
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
double len;
double price;
}num[1000];
//sort对结构数组的排序标准
bool cmp(struct node &x, struct node &y)
{
return x.len < y.len;
}
bool p = false; //标记是否可达终点
int n;
//查找可到达站点的油费单价是否比现在低:是return inedx;不是:-1
int move(int start, double max_l, double s, int &end)
{ //end顺便记录可到大的最远的站点
int i, index = -1;
for(i = start; i <= n&&num[i].len <= max_l; i++){
p = true;
if(num[i].price < s){
index = i;
s = num[i].price;
}
}
if(index == -1) end = i - 1;
return index;
}
int main(void)
{
double d1,c,d2,s;
int i;
scanf("%lf%lf%lf%lf%d", &d1, &c, &d2, &s, &n);
for(i = 0; i < n; i++){
scanf("%lf%lf", &num[i].len, &num[i].price);
}
num[n].len = d1;
num[n].price = 999; //把终点也记录下来
sort(num, num + n + 1, cmp);
int k, start = 0, end;
i = 0;
double max_L = c * d2, len = 0, sum = 0, sum_f = 0;
while(i < n){
k = move(start, len + max_L, s, end);
if(k >= n||end >= n||!p) break;
if(k == -1){ //找不到油费单价比当前站点油费低的站点
sum += (c*s);
s = num[end].price;
sum_f += ((len + max_L - num[end].len)*s/d2); //计算重复的费用
len = num[end].len;
i = end;
start = end + 1;
}else{ //有单价更低的站点
sum += ((num[k].len - len)*s/d2);
s = num[k].price;
len = num[k].len;
i = k;
start = k + 1;
}
}
if(d1-len <= max_L){ //最后到终点的检查;
sum += ((d1 - len)*s/d2);
p = true; //防止n==0时的错误;
}
else p = false;
if(p) printf("%.2f\n",sum-sum_f);
else printf("No Solution\n");
return 0;
}