RUL论文阅读—— A Novel Evaluation Framework for Unsupervised Domain Adaption on Remaining Useful Lifetime

该博客探讨了在剩余使用寿命(RUL)预测中,由于数据不平衡和缺乏标签,传统的深度学习方法(如DNNs)面临挑战。为解决这一问题,提出了无监督领域适应(DA)方法,特别是针对RUL问题,其中源域和目标域的边缘分布不同但任务相同。文章介绍了不同的DA方法,如TCA和GFK,并讨论了DNN在特征提取中的作用,以及如何通过对抗训练和矩匹配来弥合分布差异。此外,建立了一个新的评估框架,分析了目标域数据量和数据退化程度对DA性能的影响。实验结果显示了所提方法的有效性,并强调了在实际RUL预测中无监督DA的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RUL论文阅读

——A Novel Evaluation Framework for Unsupervised Domain Adaption on Remaining Useful Lifetime
link : article code

一、 Introduction

由PMD(Predictive Maintenance) 提出 RUL

DNN(require large amount data 但是RUL问题失败数据少 data imbalence)传统有监督学习方法不行

提出无监督DA,介绍DA。对于RUL就是P(Xs)不等于P(Xt)也就是边缘分布不同,所以训练这个模型主要是bridge the difference of margibal feature distributions

扩充: 迁移学习的几种分类方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值